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Abstract. This paper focuses on the minimum Bayes factor compatible with a p-value, considering

a set of priors with restricted strength. The resulting minimum Bayes factor depends on both the

strength of the set of priors and the sample size. The results can be used to interpret the evidence

for/against the hypothesis provided by a p-value in a way that accounts for the strength of the priors

and the sample size. In particular, the results suggest further lowering the p-value cutoff for “statistical

significance.”
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1. Introduction

It is important to understand what Bayesian conclusions can be drawn from classical p-values.

Specifically, this paper concerns testing hypotheses of the form θ = c, where θ is the parameter and c

is a candidate value for the parameter.1 Often in practice, but not necessary for the theory, c = 0.

The use of p-values is currently subject to important discussion, as in Wasserstein and Lazar (2016).

The following setup is standard relative to the related literature. The data comes from N i.i.d.

realizations of a random variable X, denoted as X(N) = {Xi}Ni=1. Let f(X(N)|θ = θ∗) be the likelihood

of the data, given any particular value θ∗ of the parameter θ. As usual, the likelihood model will be

taken to be a normal likelihood with an unknown mean θ and known variance σ2. By standard results,
University of Texas at Austin
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1This follows an important literature described below, but does distinguish it from certain papers that look at different
questions entirely. Some papers have looked at the relationship between frequentist and Bayesian inference for one-sided
hypotheses (e.g., Casella and Berger (1987) and Kline (2011)). Other papers have looked at the relationship between
frequentist and Bayesian inference in partially identified models (e.g., Moon and Schorfheide (2012) and Kline and
Tamer (2016)).
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the frequentist (“classical”) p-value is pN = 2(1−Φ(|tN |)), based on tN = θ̂N−c√
σ2
N

, where θ̂N = 1
N

∑N
i=1Xi

is the sample average. Φ(·) is the standard normal cumulative distribution function, and φ(·) is the

standard normal probability density function. This is not based on an asymptotic approximation,

given the setup. Anywhere in the statements of this paper Φ−1(1− pN
2 ) can be replaced by |tN |.

For the Bayesian analysis, the prior consists of two parts: a positive prior probability that θ = c and

a prior on θ 6= c. Let Πc = Π(θ = c) be the prior probability that θ = c and let g(θ) be the density of

the prior on Θ\{c}, where Θ is the parameter space for θ. It is presumed throughout that Πc ∈ (0, 1).

The cases of Πc = 0 and Πc = 1 are not particularly interesting. Let G be a set of priors for Θ\{c}.

Let Π(θ = c|X(N); Πc, g) be the posterior probability of the hypothesis θ = c based on data X(N),

and the prior Πc and g. Let Bc(g,X(N)) be the Bayes factor for the hypothesis θ = c based on the

data X(N), and the prior g. Bc(g,X(N)) is defined so that Π(θ=c|X(N);Πc,g)
1−Π(θ=c|X(N);Πc,g) = Bc(g,X(N)) Πc

1−Πc , and

hence Bc(g,X(N)) = f(θ̂N |θ=c)∫
Θ\{c} f(θ̂N |θ)g(θ)dθ

. The Bayes factor does not depend on Πc.

As in Edwards, Lindman, and Savage (1963), Berger and Delampady (1987), and Berger and

Sellke (1987) and a related literature, this paper focuses on the minimum Bayes factor over a set

of priors G, denoted as ming∈G Bc(g,X(N)), that is compatible with a given p-value. Because of

the relationship Π(θ = c|X(N); Πc, g) =
(
1 + 1

Bc(g,X(N))
1−Πc

Πc

)−1
, there is a corresponding minimum

posterior probability of the hypothesis θ = c,
(
1 + 1

ming∈G Bc(g,X(N))
1−Πc

Πc

)−1
that is compatible with

a given p-value. Hereafter, the minimum Bayes factor is known as minBF and the corresponding

minimum Bayesian posterior probability of the hypothesis is known as minBPP. For any prior in

G, the Bayes factor (respectively, posterior probability of the hypothesis) is at least as great as the

minBF (respectively, minBPP).

In this paper, the focus is on the consequence of restricting the strength of priors in G on the

corresponding minBF. Important earlier related results can be viewed as having focused on polar

special cases of this setup, in which the strength of the prior and/or sample size was implicitly taken

to be at one extreme or the other. In particular, earlier results on minBFs had no restriction on

the strength of priors in G. Restricting the strength of priors in G has a substantial impact on the

corresponding minBF.
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The paper focuses on the case that G = Cτ = {g : g = N (c, s2) and s2 ≥ τ−1} where τ ∈ (0,∞) is

a statistician-specified upper bound on the precision of the priors. N (µ, σ2) is a normal distribution

with mean µ and variance σ2. Correspondingly, the precision is τ = 1
σ2 . Cτ is the set of normal

priors centered at the null hypothesis c, with variance at least τ−1. Equivalently, Cτ is the set of

normal priors centered at the null hypothesis c, with precision no greater than τ . The C notation

refers to normal priors that are centered at c. Priors with smaller variances (higher precision) are

interpreted to be stronger priors. Thus, τ can be interpreted as an upper bound on the strength

of the priors. Relatively larger τ correspond to a set of priors Cτ that includes relatively stronger

priors. Conversely, relatively smaller τ correspond to a set of priors Cτ that includes only relatively

weaker priors. Moreover, by an appropriate scaling, τ can be interpreted in terms of the “prior sample

size” that measures the number of pseudo-observations associated with the prior, or equivalently, the

“virtual sample size” associated with the prior. Specifically, if the precision of a normal prior is M
σ2 ,

then M can be interpreted as the “prior sample size” or equivalently the size of the virtual sample

associated with the prior.2 Therefore, CM
σ2

can be interpreted to be associated with virtual samples

with virtual sample size no greater than M . The size of the virtual sample gives an interpretation of

the strength of the prior. Any τ can be “translated” to an equivalent, possibly non-integer, virtual

sample size by multiplying by σ2.

The minBF depends on M
N
, which is the relative maximal strength of the priors compared to the

data sample size N . This is the result of Section 2. It is also possible to compute related p-value

cutoffs. These cutoffs can be used to define “statistical significance” based on a p-value, in terms of

the corresponding minimum Bayes factor. For any given Bayes factor b, the corresponding “p-value

cutoff” is the level of the p-value such that the minimum Bayes factor corresponding to that p-value

is equal to b. This is the result of Section 3.
2Recall the following standard arguments. Consider a normal prior for θ with mean m and variance s2. Then, by
standard Bayesian arguments, the posterior for θ based on a virtual sample of M i.i.d. observations would have mean
M
σ2 θ̂M+ 1

s2 m
M
σ2 + 1

s2
and variance 1

M
σ2 + 1

s2
= σ2

M+σ2
s2

= σ2

M(1+σ2
s2

1
M )

, where θ̂M is the virtual sample average. If σ
2

s2
1
M is small, which

can arise when s2 is large (a weak “initial” prior) and/or when M is large (a large virtual sample), the posterior for θ
is normal with variance approximately σ2

M . Using this “posterior” from a virtual sample as the prior for the “actual”
analysis would therefore result in a normal prior with variance σ2

M where M is the sample size of the virtual sample.
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The Appendix has results for three other classes of priors: the set of normal priors that are not

restricted to be centered at the null hypothesis (Appendix A), the set of all priors with a density

(Appendix B), and the set of normal priors restricted to be centered at the null hypothesis with both

an upper bound and lower bound on the precision (Appendix C). Those results are summarized and

compared to the main results at the end of the Conclusions. Appendix D contains the technical

details of the proofs.

2. Minimum Bayes factors

Theorem 1 establishes the relationship between a p-value and the minBF for the set of priors CM
σ2
.

As noted above, M can be interpreted as the largest allowed size of the “virtual sample” associated

with the prior.

Theorem 1 (Results for CM
σ2
). The minimum Bayes factor over the set of priors CM

σ2
is

min
g∈CM

σ2

Bc(g,X(N)) =



√
1+ N

M
φ(Φ−1(1− pN2 ))

φ

(
1√

1+ N
M

Φ−1(1− pN2 )
) if 1 ≥ M

N
([Φ−1

(
1− pN

2

)
]2 − 1)

φ(Φ−1(1− pN2 ))|Φ−1(1− pN2 )|
φ(1) if 1 < M

N
([Φ−1

(
1− pN

2

)
]2 − 1)

. (1)

The above representation implies also that:

(1) For any given pN , ming∈CM
σ2
Bc(g,X(N)) is a weakly decreasing function of M

N
.

(2) For any given M
N
, ming∈CM

σ2
Bc(g,X(N)) is a weakly increasing function of pN .

Per Theorem 1, the minBF depends on the ratio of the largest allowed size of the “virtual sample”

associated with the priors compared to the actual data sample size. As summarized in Corollary 1,

existing related results can be recovered as special cases when M
N
→∞ or M

N
→ 0.

Corollary 1 (Results for CM
σ2
). When CM

σ2
includes very strong priors relative to sample size,

lim
M
N
→∞

min
g∈CM

σ2

Bc(g,X(N)) =


1 if 1 ≥ [Φ−1

(
1− pN

2

)
]2

φ(Φ−1(1− pN2 ))|Φ−1(1− pN2 )|
φ(1) if 1 < [Φ−1

(
1− pN

2

)
]2

(2)
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When CM
σ2

only includes very weak priors relative to sample size,

lim
M
N
→0

min
g∈CM

σ2

Bc(g,X(N)) =∞ (3)

The results of Corollary 1 in Equation 2 concern the case of no restriction on the strength of the

prior relative to sample size, and match the related results from Edwards, Lindman, and Savage

(1963) and Berger and Sellke (1987) with normal priors centered at the null hypothesis. This means

that those results can be understood to concern the polar special case of allowing for extremely strong

priors relative to sample size. The result of Corollary 1 in Equation 3 match the results from the

“Jeffreys (1939)-Lindley (1957) paradox.” In other words, the Jeffreys (1939)-Lindley (1957) results are

effectively the polar special case of extremely weak priors relative to sample size. The Sellke, Bayarri,

and Berger (2001) approach is not a special case of the approach taken in this paper, but numerically

those results are reasonably similar to results for CM
σ2

with strong priors relative to sample size (i.e.,

large M
N
). Along similar lines, Held and Ott (2016) propose a sample-size adjusted minBF for a linear

model with g-priors. The adjustment for sample size results in minBFs somewhat smaller than those

from Sellke, Bayarri, and Berger (2001), especially when sample size is less than 20 or so.3 Indeed,

the g-priors used by Held and Ott (2016) are reasonably similar to these normal priors centered at

the null hypothesis. Similar to the derivation in this paper, the “g” could be restricted, very much

like restricting the precision of the priors here, thereby resulting in a minBF based on g-priors with

restricted strength.

Figure 1a plots the minBF as a function of M
N

and the p-value. Figure 1b plots the minBPP as a

function of M
N

and the p-value, for Πc = 0.50. In both figures, the axes are both on a logarithmic

scale. On the left axis of these figures is M
N
. For purposes of references from the Appendix, on the

right axis of these figures is the equivalent “κ” which is relevant for other classes of priors considered

in the Appendix. Specifically, κ = 1√
2π

√
M
N
. Tables 1a and 1b tabulate the minBFs and minBPP, for

3The way the Held and Ott (2016) minBF depends on N is qualitatively different from the current paper. As N →∞,
the Held and Ott (2016) minBF approaches the finite Sellke, Bayarri, and Berger (2001) minBF. In the current paper,
as N →∞ (for fixed strength of priors), the minBF approaches ∞.
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(a) Minimum Bayes factor for CM
σ2

(b) Minimum posterior probability for CM
σ2
, with

Πc = 0.50

Figure 1. Minimum Bayes factors and minimum posterior probabilities

selected values of the p-value and M
N
. As with the figures, the tables display the equivalent κ for each

M
N
. Readers not interested in those other classes of priors can ignore κ.

The minBF is a decreasing function of M
N
, and consequently is a decreasing function of M and an

increasing function of N . In particular, the minBF from the literature that has no restriction on the

strength of the priors is smaller than the minBF in this paper with a restriction on the strength of the

priors. When minBFs are used as a “calibration” of p-values, this essentially means that the minBFs

from the literature that have no restriction on the strength of priors can “overstate” the evidence

against the null hypothesis. The results show that the minBF depends substantially on the relative

strength of the set of priors compared to the data sample size.

In particular, for some values of M
N
, there are values of pN that might be understood to suggest

evidence against the hypothesis that are actually circumstances in which there is “consensus” evidence

for the hypothesis. This paper says that there is “consensus” evidence for the null hypothesis when

the minBF exceeds 1, which implies that the minBPP exceeds the prior probability. This condition

means that there is a “consensus” that there is evidence for the null hypothesis, in the sense that the

posterior probability of the null hypothesis exceeds the prior probability of the null hypothesis, for

every prior in the set of priors. For example, consider a p-value of 0.05. If the strength of the priors
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M
N κ p-value

0.001 0.0025 0.005 0.01 0.05 0.1 0.25 0.5
CM
σ2

0.0001 0.0039894 0.4457 1.036 1.946 3.626 14.65 25.86 51.61 79.66
CM
σ2

0.001 0.012616 0.1417 0.3291 0.6179 1.151 4.644 8.19 16.34 25.21
CM
σ2

0.01 0.039894 0.04723 0.1089 0.2033 0.3764 1.501 2.633 5.22 8.023
CM
σ2

0.05 0.089206 0.02642 0.05899 0.1075 0.1945 0.7356 1.264 2.44 3.69
CM
σ2

0.1 0.12616 0.02417 0.05203 0.09231 0.1625 0.5786 0.9696 1.817 2.697
CM
σ2

1 0.39894 0.02417 0.05162 0.09003 0.1539 0.4734 0.7011 1.016 1.262
CM
σ2

100 3.9894 0.02417 0.05162 0.09003 0.1539 0.4734 0.7011 0.9786 1.003
(a) Minimum Bayes factors for CM

σ2

M
N

κ p-value
0.001 0.0025 0.005 0.01 0.05 0.1 0.25 0.5

CM
σ2

0.0001 0.0039894 0.308 0.509 0.661 0.784 0.936 0.963 0.981 0.988
CM
σ2

0.001 0.012616 0.124 0.248 0.382 0.535 0.823 0.891 0.942 0.962
CM
σ2

0.01 0.039894 0.0451 0.0982 0.169 0.273 0.6 0.725 0.839 0.889
CM
σ2

0.05 0.089206 0.0257 0.0557 0.0971 0.163 0.424 0.558 0.709 0.787
CM
σ2

0.1 0.12616 0.0236 0.0495 0.0845 0.14 0.367 0.492 0.645 0.73
CM
σ2

1 0.39894 0.0236 0.0491 0.0826 0.133 0.321 0.412 0.504 0.558
CM
σ2

100 3.9894 0.0236 0.0491 0.0826 0.133 0.321 0.412 0.495 0.501
(b) Minimum posterior probability for CM

σ2
, when Πc = 0.50

Table 1. Results for CM
σ2

relative to the data sample size is unrestricted, then the minBF is 0.4734. That is equivalent to a

minBPP of 0.321, given a 0.50 prior probability. This suggests evidence against the null hypothesis.

However, if the priors are restricted to be no more than 1% as strong as the data sample size (i.e.,
M
N

= 0.01), then the minBF is 1.501. That is equivalent to a minBPP of 0.60, given a 0.50 prior

probability. In the latter case, there actually is “consensus” evidence for the null hypothesis. This is a

very different conclusion compared to the former case, when there was no restriction on the strength

of the priors.

More generally, the relative strength of the set of priors compared to the data sample size has an

important impact on the associated minBF. For example, consider a p-value of 0.005. This is the

lowered p-value cutoff for “statistical significance” proposed by Benjamin, Berger, et al. (2018). Based
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on a range of approaches relating p-values to Bayes factors, including the minBF considerations from

Sellke, Bayarri, and Berger (2001), and in the same basic setup of a normal likelihood with unknown

mean and known variance and the same test statistic that generates the p-value, the conclusion of

Benjamin, Berger, et al. (2018) is that a p-value of 0.005 is associated with Bayes factors between

approximately 0.04 and 0.07 and correspondingly is associated with posterior probabilities of the

hypothesis between approximately 0.04 and 0.07, given a 0.50 prior probability. However, consider

the minBF from Theorem 1 with M
N

= 0.01. In that case, a p-value of 0.005 is associated with a

minBF of 0.2033. This is meaningfully higher than even the high end of the range of Bayes factors

suggested by Benjamin, Berger, et al. (2018). That is equivalent to a minBPP of 0.169, given a 0.50

prior probability. Thus, when the strength of priors is restricted in this way, a p-value of 0.005 is

associated with meaningfully less evidence against the null hypothesis. This suggests, extending the

reasoning of Benjamin, Berger, et al. (2018) to a setting with priors with restricted strength compared

to data sample size, that the p-value cutoff for “statistical significance” should be even lower still in

applications where M
N

is not large. This point is elaborated in Section 3.

Overall, a main feature of the results is the dependence on M
N
. This might seem to introduce extra

subjectivity into the results, compared to existing results on minBFs. Those existing results may seem

less subjective, in the sense that those results may be perceived to avoid an (explicit) specification

of M
N

and/or are perceived to minimize dependence on the set of priors. This could be perceived to

be an advantage of those existing results, since a reasonable goal of (objective) Bayesian analysis is

to minimize dependence on the prior. However, per Corollary 1 and surrounding discussion, those

existing results do depend on the set of priors, specifically relying on the condition that M
N

is large.

Implicitly relying on the condition that M
N

is large does not minimize the dependence on the set of

priors, and indeed the results show precisely how those minBFs depend on allowing for strong priors

relative to the data sample size. Hence, those results do not minimize dependence on the set of

priors. In particular, as discussed above by numerical example, relying on the condition that M
N

is

large can result in “overstating” the evidence against the null hypothesis if in fact M
N

is not large,

for example in larger datasets and/or with novel empirical questions such that there is relatively
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little prior information. Of course, existing results capture the situation that arises in small datasets,

and/or with strong priors. The situation is different in large datasets, and/or with weak priors.

Because Cτ = C τσ2
σ2

, Theorem 1 also gives the results for any choice of τ in Cτ by choosing M = τσ2.

The analysis does not presume M to be an integer. In that case, the minBF depends on the ratio
τσ2

N
= τ

N
σ2
, which concerns the ratio of the maximum precision of the priors compared to the (frequentist

sampling) precision of the estimator θ̂N .

3. p-value cutoffs for “statistical significance”

It is possible to derive p-value cutoffs for “statistical significance” that account for how p-values

relate to Bayes factors. In general, let pG(b) be the p-value such that ming∈G Bc(g,X(N)) = b, which

is the p-value that results in a minBF equal to any specified b, given a specified set of priors G. To

find pG(b), it is enough to solve for pN in the equation that sets ming∈G Bc(g,X(N)) equal to b. For

G = CM
σ2
, this is a trivial computational exercise, given the characterization of ming∈CM

σ2
Bc(g,X(N)) in

Theorem 1. Because of the monotonicity result in Theorem 1, any p-value above this “cutoff” results

in a minBF greater than b, and any p-value below this “cutoff” results in a minBF less than b.

Table 2a reports the cutoff p-values: pCM
σ2

(b) for different b and different M
N
. The p-value being

below pG(1) is necessary but not sufficient for “rejecting the hypothesis.” If the minBF exceeds 1,

then for any prior in G, the posterior probability of the hypothesis exceeds the prior probability of

the hypothesis. That can be interpreted to mean that the data provides consensus evidence for the

hypothesis. Alternatively, if the minBF falls below 1, then for at least some priors in G, the posterior

probability of the hypothesis falls below the prior probability of the hypothesis. Not finding consensus

evidence for the hypothesis is presumably not enough to “reject the hypothesis.” As such, it may be

useful to consider p-value cutoffs based on different b. According to Jeffreys (1939) and also Kass and

Raftery (1995), a Bayes factor of approximately 1
3 is the cutoff for finding “substantial” or “positive”

evidence against the hypothesis. According to Jeffreys (1939), a Bayes factor of approximately 1
10 is

the cutoff for finding “strong” evidence against the hypothesis. According to Kass and Raftery (1995),

a Bayes factor of approximately 1
20 is the cutoff for finding “strong” evidence against the hypothesis.
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M
N

κ b
1 0.33333 0.1 0.05

CM
σ2

0.0001 0.0039894 0.002405 0.000731 0.0002015 9.653e-05
CM
σ2

0.001 0.012616 0.008544 0.002535 0.0006865 0.0003263
CM
σ2

0.01 0.039894 0.03085 0.008714 0.002276 0.001064
CM
σ2

0.05 0.089206 0.07378 0.01897 0.004595 0.002068
CM
σ2

0.1 0.12616 0.1044 0.02456 0.005512 0.002383
CM
σ2

1 0.39894 0.239 0.02918 0.005714 0.002404
CM
σ2

100 3.9894 0.3161 0.02918 0.005714 0.002404
(a) Cutoff p-values

b
1 0.33333 0.1 0.05

p-
va
lu
e

0.001 CM
σ2

1.985e-05 0.000179 0.002033 0.008801
0.0025 CM

σ2
0.0001073 0.0009746 0.01211 n/p

0.005 CM
σ2

0.0003797 0.003514 0.0654 n/p
0.01 CM

σ2
0.001327 0.01305 n/p n/p

0.05 CM
σ2

0.02405 n/p n/p n/p
0.1 CM

σ2
0.09153 n/p n/p n/p

0.25 CM
σ2

1.246 n/p n/p n/p
0.5 CM

σ2
n/p (∞) n/p n/p n/p

(b) Strength of priors relative to sample size that results in a given minimum Bayes factor, for given p-value.
n/p, not possible (there is no strength of prior relative to sample size that results in that minimum Bayes
factor for that p-value). n/p (∞), not possible for finite values of MN but achievable “in the limit” as M

N →∞.

Table 2. Results for CM
σ2

A main conclusion is that the p-value cutoff for “statistical significance” should be smaller when
M
N

is smaller. Again, the reason is that p-values are associated with less evidence against the null

hypothesis when M
N

is smaller. How much smaller the cutoff for “statistical significance” should

be depends on the application-specific strength of the priors relative to sample size, and the Bayes

factor that justifies “rejecting” the hypothesis. For example, in “big data” applications with large

N , it might be reasonable to consider that M
N

is around 0.01 (or possibly smaller). And it might

be reasonable to require a Bayes factor of around 0.1 to “reject” the hypothesis, reflecting “strong”

evidence against the hypothesis, which roughly matches the suggestion of Benjamin, Berger, et al.
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(2018). In that case, a p-value of less than around 0.0025 should be required to “reject” the hypothesis.

Thus, this suggests considering further reducing the cutoff for “statistical significance” compared

even to Benjamin, Berger, et al. (2018) for such applications. The analysis in Appendix A shows

essentially the same conclusion would follow if the priors were normal priors that are not restricted to

be centered at the null hypothesis, and the analysis in Appendix B does the same for general priors

with a density of the same “strength.”

Although the difference between p-value cutoffs of 0.0025 and 0.005 might seem modest, Tables 1a

and 1b show there is a meaningful difference in the associated minBF and minBPP. When M
N

is large,

the results in this paper do not provide any reason to change the proposal made by Benjamin, Berger,

et al. (2018). When M
N

is large, a p-value of 0.005 is associated with a minBF of around 0.1, thereby

reflecting “strong” evidence against the hypothesis, as discussed in Benjamin, Berger, et al. (2018).

But, when for example M
N

= 0.01, a p-value of around 0.0025 is associated with a minBF of around

0.1.

Another way to use these results is to determine, given a particular p-value, how strong the set of

priors would need to be relative to sample size in order to be able to draw a selected conclusion, in

terms of the corresponding minBF. For example, to find the M
N

that results in a minBF equal to any

specified b, given a specified p-value and based on set of priors CM
σ2
, it is enough to solve for M

N
in

Equation 1, when ming∈CM
σ2
B(g,X(N)) is specified to be b. This is a trivial computational exercise,

given the characterization in Theorem 1. The results for selected p-values are displayed in Table 2b.

For example, for a p-value of 0.005 to result in a minBF of 0.1, it would be necessary that M
N

= 0.0654,

which requires the application be such that it is reasonable that there is a prior that is about 6.5%

as strong as the data. This reinforces the argument that there is reason to lower the p-value cutoff

for statistical significance beyond even the 0.005 proposed by Benjamin, Berger, et al. (2018), for

applications such that M
N

is smaller.
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4. Conclusions

This paper has derived the minimum Bayes factor compatible with a given p-value, based on priors

with restricted strength. The resulting minimum Bayes factor depends on the relative strength of

the set of priors compared to the data sample size (Section 2). These results can be used to derive

cutoff p-values for “statistical significance” (Section 3). A main conclusion is that the p-value cutoff

for “statistical significance” should in some applications be smaller than even the 0.005 proposed by

Benjamin, Berger, et al. (2018), depending on the application-specific strength of priors relative to

data sample size. Some notable existing results in the literature can be interpreted to be polar special

cases of the results in this paper.

The Appendix has results for three other sets of priors: the set of priors with a density, the set

of normal priors that are not restricted to be centered at the null hypothesis, and the set of normal

priors restricted to be centered at the null hypothesis with both an upper bound and lower bound on

the precision. The results for the set of normal priors that are not restricted to be centered at the

null hypothesis (in Appendix A) and the results for the set of normal priors that are restricted to

be centered at the null hypothesis (the main results of the paper) are basically the same, as long as
M
N

is less than approximately 0.1. However, if M
N

is substantially larger than 0.1, then there can be

a meaningful difference between the results for all normal priors and normal priors restricted to be

centered at the null hypothesis. The results for the set of priors with a density (in Appendix B) and

the results for the set of normal priors that are not restricted to be centered at the null hypothesis

(in Appendix A) are basically the same, as long as the strength of the set of priors “matches” in

a way formalized later on. Therefore, whether the set of priors includes only normal priors, or all

priors with a density, does not make much of a difference. Finally, in Appendix C, for the set of

normal priors centered at the null hypothesis with the addition of a lower bound on the precision, this

paper considers the maximum Bayes factor in addition to the minimum Bayes factor. As an editorial

decision, these results are relegated to the Appendix.
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(a) Ratio of minimum Bayes factor for CM
σ2

com-
pared to NM

σ2

(b) Difference of minimum posterior probability
for CM

σ2
compared to NM

σ2
, with Πc = 0.50

Figure 2. CM
σ2

compared to NM
σ2

Appendix A. Normal priors not restricted to be centered at the null hypothesis

Let

Nτ = {g : g = N (m, s2) and m ∈ R and s2 ≥ τ−1} (4)

for τ ∈ (0,∞). Nτ is the set of normal priors with precision no greater than τ (i.e., a variance no less

than τ−1). Unlike Cτ , Nτ does not restrict the priors to be centered at the null hypothesis. Theorem

2 establishes the relationship between a p-value and the minBF for the set of priors NM
σ2
. As above,

M can be interpreted as the largest allowed size of the “virtual sample” associated with the prior.

Theorem 2 (Results for NM
σ2
). The minimum Bayes factor over the set of priors NM

σ2
is

min
g∈NM

σ2

Bc(g,X(N)) =
√

1 + N

M

√
2πφ

(
Φ−1

(
1− pN

2

))
. (5)

The above representation implies also that:

(1) For any given pN , ming∈NM
σ2
Bc(g,X(N)) is a decreasing function of M

N
.

(2) For any given M
N
, ming∈NM

σ2
Bc(g,X(N)) is an increasing functions of pN .
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M
N κ p-value

0.001 0.0025 0.005 0.01 0.05 0.1 0.25 0.5
NM

σ2
0.0001 0.0039894 0.4455 1.036 1.945 3.625 14.65 25.85 51.6 79.66

NM
σ2

0.001 0.012616 0.1409 0.3276 0.6155 1.147 4.635 8.179 16.33 25.2
NM

σ2
0.01 0.039894 0.04477 0.1041 0.1955 0.3643 1.472 2.598 5.186 8.005

NM
σ2

0.05 0.089206 0.02041 0.04745 0.08915 0.1661 0.6713 1.185 2.365 3.65
NM

σ2
0.1 0.12616 0.01477 0.03434 0.06452 0.1202 0.4859 0.8574 1.711 2.642

NM
σ2

1 0.39894 0.0063 0.01464 0.02751 0.05126 0.2072 0.3656 0.7297 1.126
NM

σ2
100 3.9894 0.004477 0.01041 0.01955 0.03643 0.1472 0.2598 0.5186 0.8005

(a) Minimum Bayes factors for NM
σ2

M
N κ p-value

0.001 0.0025 0.005 0.01 0.05 0.1 0.25 0.5
NM

σ2
0.0001 0.0039894 0.308 0.509 0.66 0.784 0.936 0.963 0.981 0.988

NM
σ2

0.001 0.012616 0.124 0.247 0.381 0.534 0.823 0.891 0.942 0.962
NM

σ2
0.01 0.039894 0.0429 0.0943 0.164 0.267 0.596 0.722 0.838 0.889

NM
σ2

0.05 0.089206 0.02 0.0453 0.0819 0.142 0.402 0.542 0.703 0.785
NM

σ2
0.1 0.12616 0.0146 0.0332 0.0606 0.107 0.327 0.462 0.631 0.725

NM
σ2

1 0.39894 0.00626 0.0144 0.0268 0.0488 0.172 0.268 0.422 0.53
NM

σ2
100 3.9894 0.00446 0.0103 0.0192 0.0351 0.128 0.206 0.341 0.445

(b) Minimum posterior probability for NM
σ2
, when Πc = 0.50

Table 3. Results for NM
σ2

Figure 2a shows the ratio of the minBFs for CM
σ2

compared to NM
σ2
. Figure 2b shows the difference

of the minBPP for CM
σ2

compared to NM
σ2
, for Πc = 0.50. These sets of priors are based on the same

virtual sample size, but differ in being restricted to being centered at c or not. As long as M
N

is less

than about 0.1, the minBF for NM
σ2

is very close to the minBF for CM
σ2
. The same is true for the

minBPP. However, when M
N

exceeds about 0.1, the additional restriction to normal priors centered at

c has an important impact. Tables 3a and 3b tabulate the minBFs and minBPPs. Table 4a reports

the cutoff p-values for statistical significance, and Table 4b reports the strength of prior relative to

sample size that results in a given minimum Bayes factor.
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M
N

κ b
1 0.33333 0.1 0.05

NM
σ2

0.0001 0.0039894 0.002406 0.0007314 0.0002017 9.661e-05
NM

σ2
0.001 0.012616 0.008577 0.002548 0.0006908 0.0003285

NM
σ2

0.01 0.039894 0.03169 0.009053 0.002393 0.001127
NM

σ2
0.05 0.089206 0.08101 0.02205 0.005678 0.002647

NM
σ2

0.1 0.12616 0.1215 0.03206 0.008137 0.003774
NM

σ2
1 0.39894 0.4051 0.08911 0.02135 0.009725

NM
σ2

100 3.9894 0.9205 0.1374 0.03169 0.01429
(a) Cutoff p-values

b
1 0.33333 0.1 0.05

p-
va
lu
e

0.001 NM
σ2

1.985e-05 0.0001786 0.001988 0.008001
0.0025 NM

σ2
0.0001072 0.0009659 0.01084 0.04481

0.005 NM
σ2

0.0003786 0.003418 0.03933 0.1784
0.01 NM

σ2
0.001315 0.01196 0.1512 1.107

0.05 NM
σ2

0.02193 0.2394 n/p n/p
0.1 NM

σ2
0.07162 1.509 n/p n/p

0.25 NM
σ2

0.3629 n/p n/p n/p
0.5 NM

σ2
1.736 n/p n/p n/p

(b) Strength of priors relative to sample size that results in a given minimum Bayes factor, for given p-value.
n/p, not possible (there is no strength of prior relative to sample size that results in that minimum Bayes
factor for that p-value).

Table 4. Results for NM
σ2

Appendix B. Priors with bounded density

Let

DK = {g : ||g||∞ ≤ K}, (6)

forK ∈ (0,∞). DK is the set of priors that admit a density that is bounded above by the fixed constant

K. Relatively larger K correspond to a set of priors DK that includes relatively stronger priors and

relatively smaller K correspond to a set of priors DK that includes only relatively weaker priors.

Specifically, for many priors that are themselves parameterized, K can be interpreted as a bound on the

parameters of the prior. Then these parameters can be interpreted in terms of the strength of the prior.



16 BAYES FACTORS AND P -VALUES

Thus, K can be interpreted as a bound on the strength of the priors in DK . For example, generalized

normal priors are contained inDK , with density g(θ) = s
2cΓ( 1

s
) exp(−( |θ−m|

c
)s) = 1

2cΓ( 1
s

+1) exp(−( |θ−m|
c

)s),

with location m and shape s and scale c. As special cases, for different values of the parameters

(including limiting cases), the class of generalized normal priors include Laplace priors (s = 1), normal

priors (s = 2), and uniform priors (s → ∞). The class of generalized normal priors also includes

“intermediate” cases in between those named distributions. As such, the class of generalized normal

priors can be motivated as a class of priors (e.g., Diananda (1949, Section 4), Box and Tiao (1973/1992,

Section 3.2.1), and Goodman and Kotz (1973), among others). Laplace priors have a connection to

lasso estimation of linear models (e.g, Tibshirani (1996) and Park and Casella (2008)). The maximal

value of the density of a generalized normal distribution is s
2cΓ( 1

s
) , regardless of the location of the

prior. So, DK contains all of the generalized normal priors with parameters satisfying 1
2cΓ( 1

s
+1) ≤ K.

In particular, setting K =
√
M√

2πσ2 results in the set of priors with maximal density that is no greater

than that of a normal prior based on M observations in the associated virtual sample.

Lemma 1 (Characterization of DK). DK contains all normal priors with variance at least 1
2πK2 and

no other normal priors; contains all uniform priors with support with Lebesgue measure at least K−1

and no other uniform priors; contains all Laplace priors with variance at least 1
2K2 and no other

Laplace priors. All priors in DK have support with Lebesgue measure at least K−1. It holds that

Nτ ( D √
τ√
2π

for any τ ∈ (0,∞), and Nτ 6⊆ DK if K <
√
τ√

2π .

Theorem 3 establishes the relationship between a p-value and the minBF for DK . Let

κ := κ(K,N, σ2) ≡ K√
N
σ. (7)

Theorem 3 (Results for DK). The minimum Bayes factor over the set of priors DK is

min
g∈DK

Bc(g,X(N)) =
φ
(
Φ−1

(
1− pN

2

))
κ
(
2Φ

(
1

2κ

)
− 1

) . (8)

The above representation implies also that:

(1) For any given pN , ming∈DK Bc(g,X(N)) is a decreasing function of κ(K,N, σ2).
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(2) For any given κ, ming∈DK Bc(g,X(N)) is an increasing functions of pN .

By Lemma 1, for any given κ associated with DK , the largestM such that NM
σ2
⊆ DK has M

N
= 2πκ2,

so this formula is a mapping from κ to the “analogous” M
N
.4 This mapping is how the figures have

both κ and M
N

on the axes. Based on numerical evaluation of Corollary 2,
ming∈NM

σ2
Bc(g,X(N))

ming∈D √
M√

2πσ2

Bc(g,X(N)) is

often very close to 1, and never exceeds around 1.15 over the relevant range of M
N
. Thus, the minBF

for the set of priors DK is very close to the minBF for the set of priors NM
σ2
, when M

N
= 2πκ2 holds,

or equivalently, when M = 2πK2σ2. Consequently, normality of the priors does not substantially

influence the resulting minBF.

Corollary 2 (Results for DK compared to NM
σ2
). It holds that

ming∈NM
σ2
Bc(g,X(N))

ming∈D √
M√

2πσ2

Bc(g,X(N)) =
√

1 + M

N

2Φ
√π

2

√
N

M

− 1
 . (9)

The result of Corollary 3 in Equation 10 concerns the case of no restriction on the strength of

the prior relative to data sample size, and matches the related results from Edwards, Lindman, and

Savage (1963) and Berger and Sellke (1987). Therefore, those results can be understood to concern

the polar special case of allowing for extremely strong priors relative to sample size. Similar to above,

the result of Corollary 3 in Equation 11 matches the results from the “Jeffreys (1939)-Lindley (1957)

paradox.”

Corollary 3 (Results for DK). When DK includes very strong priors relative to sample size,

lim
K√
N
→∞

min
g∈DK

Bc(g,X(N)) = exp
(
−1

2[Φ−1
(

1− pN
2

)
]2
)

(10)

When DK only includes very weak priors relative to sample size,

lim
K√
N
→0

min
g∈DK

Bc(g,X(N)) =∞ (11)

4DK contains exactly those normal priors with precision no greater than 2πK2 = 2π Nσ2κ
2. Therefore, the largest M

such that NM
σ2
⊆ DK is (2π Nσ2κ

2)σ2 = 2πNκ2.
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Appendix C. Normal priors with an upper bound and lower bound on the precision

Let

Cτ ,τ = {g : g = N (c, s2) and τ−1 ≥ s2 ≥ τ−1} (12)

for 0 < τ < τ . Relative to Cτ , Cτ ,τ adds a lower bound on the precision of the prior (i.e., an upper

bound on the variance of the prior). Equivalently, this can be viewed as corresponding to a lower

bound on the size of the virtual sample associated with the prior. Based on Cτ ,τ , it is possible to derive

a maximum Bayes factor and associated maximum posterior probability of the hypothesis. Hereafter,

these quantities are known as maxBF and maxBPP, respectively. Having non-trivial bounds on the

strength of the prior is key for the maxBF to be non-trivial.

Theorem 4 (Results for CM
σ2 ,

m
σ2
). The minimum Bayes factor over the set of priors CM

σ2 ,
m
σ2

is

min
g∈CM

σ2 ,
m
σ2

Bc(g,X(N)) =


ming∈CM

σ2
Bc(g,X(N)) if 1 ≥ m

N
([Φ−1

(
1− pN

2

)
]2 − 1)

√
1+N

m
φ(Φ−1(1− pN2 ))

φ

(
1√

1+N
m

Φ−1(1− pN2 )
) if 1 < m

N
([Φ−1

(
1− pN

2

)
]2 − 1)

. (13)

The maximum Bayes factor over the set of priors CM
σ2 ,

m
σ2

is

max
g∈CM

σ2 ,
m
σ2

Bc(g,X(N)) = max


√

1 + N
M
φ
(
Φ−1

(
1− pN

2

))
φ
(

1√
1+ N

M

Φ−1
(
1− pN

2

)) ,
√

1 + N
m
φ
(
Φ−1

(
1− pN

2

))
φ
(

1√
1+N

m

Φ−1
(
1− pN

2

))
 . (14)

The above representations imply also that:

(1) For any given pN and given m
N
, ming∈CM

σ2 ,
m
σ2
Bc(g,X(N)) is a weakly decreasing function of M

N
.

(2) For any given pN and given M
N
, ming∈CM

σ2 ,
m
σ2
Bc(g,X(N)) is a weakly increasing function of m

N
.

(3) For any given pN and given m
N
, maxg∈CM

σ2 ,
m
σ2
Bc(g,X(N)) is a weakly increasing function of M

N
.

(4) For any given pN and given M
N
, maxg∈CM

σ2 ,
m
σ2
Bc(g,X(N)) is a weakly decreasing function of m

N
.

(5) For any given M
N

and m
N
, ming∈CM

σ2 ,
m
σ2
Bc(g,X(N)) and maxg∈CM

σ2 ,
m
σ2
Bc(g,X(N)) are weakly

increasing functions of pN .
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Appendix D. Proofs

The likelihood is f(X(N)|θ = θ∗) = 1
(2πσ2)

N
2

exp(− 1
2σ2

∑N
i=1(Xi − θ̂N)2) exp(− 1

2σ2
N

(θ̂N − θ∗)2) ∝

exp(− 1
2σ2
N

(θ̂N−θ∗)2), where ∝ drops multiplicative terms that do not depend on θ∗. Let f(θ̂N |θ = θ∗) =
1√

2π σ2
N

exp(− (θ̂N−θ∗)2

2σ2
N

). Because Π(θ = c|X(N); Πc, g) = f(X(N)|θ=c)Πc
f(X(N)|θ=c)Πc+

(∫
Θ\{c} f(X(N)|θ)g(θ)dθ

)
(1−Πc)

, for

any G the minBPP is f(X(N)|θ=c)Πc
f(X(N)|θ=c)Πc+

(
supg∈G

∫
Θ\{c} f(X(N)|θ)g(θ)dθ

)
(1−Πc)

=
1 +

(
supg∈G

∫
Θ\{c} f(θ̂N |θ)g(θ)dθ

)
f(θ̂N |θ=c)

1−Πc
Πc

−1

and the minBF is f(θ̂N |θ=c)(
supg∈G

∫
Θ\{c} f(θ̂N |θ)g(θ)dθ

) .
The proofs of Lemma 1 and Corollary 2 are trivial and therefore omitted.

Proof of Theorem 1 and Theorem 2 and Theorem 4 and Corollary 1. The expression for minBF with

normal priors, when g is a N (m, s2) prior, depends on
∫

Θ\{c}
1√

2π σ2
N

exp
(
− (θ̂N−θ)2

2σ2
N

)
1
s
φ
(
θ−m
s

)
dθ =

∫
Θ\{c}

1√
2π σ2

N

exp
(
− (θ̂N−θ)2

2σ2
N

)
1√

2πs2 exp
(
− (θ−m)2

2s2
)
dθ = 1√

σ2
N

+s2
φ

 θ̂N−m√
σ2
N

+s2

 . This recognizes the inte-

gral as the density of a sum of independent N (0, σ2

N
) and N (m, s2) random variables, evaluated at

θ̂N , which is the density of a N (m, σ2

N
+ s2) random variable evaluated at θ̂N .

The proof considers different sets of normal priors, with different restrictions on m and s2.

Unrestricted m and lower bound on s2: With lower bound on the variance of the prior, s2 ≥ s2 > 0,

the maximum is achieved at m = θ̂N and s2 = s2. In that case, the minBF is

f(θ̂N |θ = c)
supg∈G

∫
Θ\{c} f(θ̂N |θ)g(θ)dθ

=

1√
σ2
N

φ

 θ̂N−c√
σ2
N


1√
σ2
N

+s2
φ(0) = φ (tN)√

σ2
N√

σ2
N

+s2
1√
2π

(15)

Equation 5 of Theorem 2 follows because Equation 15 can be written, when s2 = σ2

M
,

min
g∈NM

σ2

Bc(g,X(N)) =
√

1 + N

M

√
2πφ (tN) (16)

The rest of Theorem 2 follows immediately.
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Restricted m and unrestricted s2: With the prior restricted to have m = c, the optimization

problem becomes

sup
g∈G

1√
σ2

N + s2
φ

 θ̂N − c√
σ2

N + s2

 = sup
g∈G

1√
σ2

N + s2
φ


√

σ2

N√
σ2

N + s2
tN

 =


1√
σ2
N
|tN |

φ (1) if |tN | ≥ 1

1√
σ2
N

φ (tN ) if |tN | < 1
(17)

The optimization result holds as follows. Using the fact that φ′(x) = −xφ(x), the derivative of the

objective with respect to s2 is −1
2

(
σ2

N
+ s2

)− 3
2 φ

 √
σ2
N
tN√

σ2
N

+s2


1−

 √
σ2
N
tN√

σ2
N

+s2

2 .
If |tN | ≥ 1, by solving the first order condition, this is maximized at s2 = σ2

N
t2N− σ2

N
= σ2

N
(t2N−1). This

is indeed a maximum because the derivative is of the form of a negative multiple of

1−
 √

σ2
N
tN√

σ2
N

+s2

2.
Note that

 √
σ2
N
tN√

σ2
N

+s2

2

is a decreasing function of s2. It equals 1 exactly at the claimed maximizer

value for s2, is less than 1 for greater values of s2, and is greater than 1 for lesser values of s2.

Therefore, the derivative is negative for values of s2 greater than the claimed maximizer, and is

positive for values of s2 less than the claimed maximizer.

If |tN | < 1, the derivative is negative for all values of s2 and the maximizing value is s2 = 0.

Restricted m and lower bound on s2: Suppose that s2 > 0 is a lower bound on the variance of

the prior. From above, this lower bound is binding when s2 ≥ σ2

N
(t2N − 1) and |tN | ≥ 1 and is always

binding when |tN | < 1. When the lower bound is binding, because the minBF is decreasing for

s2 > σ2

N
(t2N − 1), the minBF is

f(θ̂N |θ = c)
supg∈G

∫
Θ\{c} f(θ̂N |θ)g(θ)dθ

=

1√
σ2
N

φ (tN)

1√
σ2
N

+s2
φ

 √
σ2
N√

σ2
N

+s2
tN

 (18)



BAYES FACTORS AND p-VALUES 21

Therefore, overall, the minBF is


φ(tN )√
σ2
N√

σ2
N

+s2
φ

 √
σ2
N√

σ2
N

+s2
tN

 if s2 ≥ σ2

N
(t2N − 1)

φ(tN )|tN |
φ(1) if s2 < σ2

N
(t2N − 1)

(19)

Equation 1 of Theorem 1 follows because Equation 19 can be written, when s2 = σ2

M

min
g∈CM

σ2

Bc(g,X(N)) =



√
1+ N

M
φ(tN )

φ

(
1√

1+ N
M

tN

) if 1 ≥ M
N

(t2N − 1)

φ(tN )|tN |
φ(1) if 1 < M

N
(t2N − 1)

(20)

As M
N
→∞, 1 ≥ M

N
(t2N − 1) exactly when |tN | ≤ 1. And

√
1+ N

M
φ(tN )

φ

(
1√

1+ N
M

tN

) → 1. Equation 2 of Corollary

1 follows. Equation 3 of Corollary 1 immediately follows.

The derivative of the minBF in Equation 20 with respect to N
M

is
1
2φ(tN )

(
1−
(

1√
1+ N

M

tN

)2
)

(1+ N
M

)
1
2 φ

(
1√

1+ N
M

tN

) ≥ 0 for

1 ≥ M
N

(t2N − 1), precisely because 1 ≥ t2N
1+ N

M

. The derivative is 0 for 1 < M
N

(t2N − 1). Therefore, the

minBF is a decreasing function of M
N
.

Also correspondingly, Equation 20 can be written as

min
g∈CM

σ2

Bc(g,X(N)) =



√
1+ N

M

exp
(
− 1

2 t
2
N

(
1

1+ N
M

−1
)) if 1 ≥ M

N
(t2N − 1)

exp(− 1
2 (t2N−log(t2N )))√

2πφ(1) if 1 < M
N

(t2N − 1)

(21)

Therefore, since
(

1
1+ N

M

− 1
)
< 0, the minBF is an increasing function of pN when 1 ≥ M

N
(t2N − 1).

Further, the derivative of t2N − log(t2N) with respect to t2N is 1 − t−2
N , which is positive because

1 < M
N

(t2N − 1) implies that t2N > 1 + N
M
> 1. Therefore, the minBF is an increasing function of pN

also when 1 < M
N

(t2N − 1).
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Restricted m and upper and lower bound on s2: First consider minBF. If there is an upper

bound on the variance s2 ≥ σ2

N
(t2N − 1), then the above arguments deriving minBF are unaffected.

If s2 < σ2

N
(t2N − 1), then it is binding in the optimization problem to find minBF, in which case the

minBF is
√

1+N
m
φ(tN )

φ

(
1√

1+N
m

tN

) when s2 = σ2

m
. Equation 13 of Theorem 4 follows, and the rest of the properties

of the minBF follow by arguments similar to above.

Now consider maxBF. By the same arguments as above, for any restricted range of variances of the

prior [s2, s2], the Bayes factor is maximized at either s2 or s2. Therefore, the optimization problem to

achieve the maxBF is

inf
g∈G

1√
σ2

N
+ s2

φ

 θ̂N − c√
σ2

N
+ s2

 = min

 1√
σ2

N
+ s2

φ


√

σ2

N√
σ2

N
+ s2

tN

 , 1√
σ2

N
+ s2

φ


√

σ2

N√
σ2

N
+ s2

tN

 (22)

Therefore, overall, the maxBF is

φ (tN)

min


√

σ2
N√

σ2
N

+s2
φ

 √
σ2
N√

σ2
N

+s2
tN

 ,
√

σ2
N√

σ2
N

+s2
φ

 √
σ2
N√

σ2
N

+s2
tN


(23)

Equation 14 of Theorem 4 follows because Equation 23 can be written, when s2 = σ2

M
and s2 = σ2

m
,

max
g∈CM

σ2 ,
m
σ2

Bc(g,X(N)) = max


√

1 + N
M
φ (tN)

φ
(

1√
1+ N

M

tN

) ,
√

1 + N
m
φ (tN)

φ
(

1√
1+N

m

tN

)
 (24)

Maximizing
√

1+ρφ(tN )

φ

(
1√
1+ρ tN

) over an interval [ρ, ρ] is such that increasing ρ results in a weakly smaller maxi-

mized value, and increasing ρ results in a weakly greater maximized value. Therefore, maxg∈CM
σ2 ,

m
σ2
Bc(g,X(N))

is a weakly increasing function of M
N

and weakly decreasing function of m
N
. Because the maximum

of increasing functions is increasing, and based on similar arguments to before from Equation 21,

maxg∈CM
σ2 ,

m
σ2
Bc(g,X(N)) is an increasing function of pN . �
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Proof of Theorem 3 and Corollary 3. It holds that supg∈DK
∫

Θ\{c}
1√

2π σ2
N

exp
(
− (θ̂N−θ)2

2σ2
N

)
g(θ)dθ is achieved

at g∗(θ) =


K θ ∈ [θ̂N − 1

2K , θ̂N + 1
2K ]

0 otherwise
, resulting in supg∈DK

∫
Θ\{c}

1√
2π σ2

N

exp
(
− (θ̂N−θ)2

2σ2
N

)
g(θ)dθ =

∫ θ̂N+ 1
2K

θ̂N− 1
2K

1√
2π σ2

N

exp
(
− (θ̂N−θ)2

2σ2
N

)
Kdθ =

∫ 1
2K
− 1

2K

1√
2π σ2

N

exp
(
− θ2

2σ2
N

)
Kdθ = K

2Φ
 1

2K
√

σ2
N

− 1
 .

So, the minBF is f(θ̂N |θ=c)
supg∈DK

∫
Θ\{c} f(θ̂N |θ)g(θ)dθ

=

1√
σ2
N

φ(tN )

K

2Φ

 1

2K

√
σ2
N

−1

 = φ(tN )

K√
N
σ

(
2Φ
(

1
2 K√

N
σ

)
−1
) . This

establishes Equation 8 of Theorem 3.

The derivative of the denominator of the minBF with respect to κ is (2Φ( 1
2κ)−1)+κ2φ( 1

2κ)1
2(−κ−2) =

(2Φ( 1
2κ)−1)−κ−1φ( 1

2κ) = erf( 1
2
√

2κ)−κ−1φ( 1
2κ) ≥ 0. The inequality follows: by the representation that

erf(z) = 2√
π

∫ z
0 exp(−t2)dt ≥ 2√

π
z exp(−z2), erf( 1

2
√

2κ) ≥ 1√
2πκ

−1 exp(− ( 1
2κ )2

2 ) = κ−1φ( 1
2κ). Therefore,

the minBF is a decreasing function of κ.

As κ = K√
N
σ → ∞, by L’Hopital’s rule, κ

(
2Φ

(
1

2κ

)
− 1

)
= (2Φ( 1

2κ)−1)
1
κ

→ 2φ( 1
2κ)−1

κ2
1
2

−1
κ2

∣∣∣∣
κ→∞

= φ(0).

So, as κ→∞, the minBF approaches φ(tN )
φ(0) = φ(tN )

1√
2π
. Similarly, as κ→ 0, κ

(
2Φ

(
1

2κ

)
− 1

)
→ 0. So, as

κ→ 0, the minBF approaches ∞. This establishes Equations 10 and 11 of Corollary 3. �
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