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1. Introduction

Models with social interactions accommodate the possibility that an individual’s outcome

may be related to the outcomes, choices, treatments, and/or other characteristics of other

individuals. Consequently, these models can involve simultaneity in the determination of the

outcomes that does not exist in classical models of treatment response. Such models have

been used to study alcohol use (e.g., Kremer and Levy (2008)), education outcomes (e.g.,

Epple and Romano (2011), Sacerdote (2011)), obesity (e.g., Christakis and Fowler (2007)),

smoking (e.g., Powell, Tauras, and Ross (2005)), and substance use (e.g., Lundborg (2006)),

among other applications.

Models of social interactions may often be written in terms of a response function yig(·)

that relates the outcome yig of individual i in group g to the treatment dig of individual i in

group g and the outcomes y−ig and treatments d−ig of other individuals in group g, according

to yig = yig(dig, d−ig, y−ig). Factors other than the treatments and others’ outcomes that

affect the outcome are implicitly captured by the functional form of yig(·). In particular,

if applicable, the network of interactions among the individuals in the group are implicitly

captured by the functional form of yig(·). Moreover, as discussed further later in the chapter,

the response function can be written to depend on different quantities. For example, the

response function could be written in “reduced form” to depend only on the treatments but
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not the outcomes of the other individuals in the group. In a model of infectious diseases,

yig(·) might be the health outcome of individual i as a function of the vaccination status

of individual i, the vaccination status of the other people in individual i’s reference group,

and health outcomes of the other people in individual i’s reference group. Or for another

example, in a model of classroom production, yig(·) might be the test score of student i as a

function of the test scores of the students in student i’s classroom. This chapter discusses

a variety of specifications of these response functions, including the linear-in-means model

and nonlinear models and links these response functions to models of social interactions in

economics and the corresponding identification problems. In some settings, these response

functions correspond to best response functions of an underlying game. In other settings,

these response functions are statistical objects that are used to define a particular treatment

effect. Both interpretations are considered.

Specifically, this chapter discusses two main issues relating to the econometrics of models of

social interactions. First, this chapter discusses the identification of models of social interac-

tions. Models with social interactions are typically estimated with data on many small groups.

For each group, the data typically consist of the outcome and treatment of each individual

and perhaps other data like the demographic characteristics. The identification question asks

whether it is possible to use such data to recover information about the underlying model

that generated the data. And second, this chapter discusses the interpretation and policy

relevance of models of social interactions. An important consideration in the application of

models of social interactions concerns the adequacy of the specification of the model. Models

of social interactions inevitably involve assumptions, either explicit or implicit, about the

nature of the interactions. These assumptions often times entail significant restrictions on

behavior that are not necessarily implied by economic theory for all applications. These

assumptions also concern the relationship between the observed data and the underlying

model that generated the data. Therefore, such assumptions are important considerations in

the assessment of the adequacy of models of social interactions for particular applications.
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Another important consideration in the application of models of social interactions concerns

policy relevance, which relates to the question of how to use the model to evaluate policy

interventions.

The chapter leaves out other important issues, such as the nontrivial question of statistical

inference. In addition, the chapter does not address the important problems related to social

welfare, characterizing winners and losers in models with social interactions.

Finally, the literature on social interactions is large, and so this chapter cannot cover

all important issues in the literature. Hence, this chapter is a complement rather than a

substitute for other already existing reviews, perspectives, and works like Manski (2000),

Glaeser and Scheinkman (2001), Scheinkman (2008), Durlauf and Ioannides (2010), Blume,

Brock, Durlauf, and Ioannides (2011), Graham (2015), and de Paula (2016).

2. Identification of models of social interactions

2.1. The linear-in-means model. The most commonly used model of social interactions

is the linear-in-means model. There are many variants of the linear-in-means model, all of

which are similar to the specification that is specifically considered in this section:

(1) yig = α + xigβ +
∑
j 6=i

gwijxjg

 γ +
∑
j 6=i

gwijyjg

 δ + εig,

where yig is the outcome of individual i in group g, xig are exogenous observables (i.e.,

“explanatory variables”) relating to individual i in group g, and εig are exogenous unobservables

relating to individual i in group g. If γ = 0 and δ = 0, then the linear-in-means model is a

standard linear model for yig.

Social interactions are accommodated by including
(∑

j 6=i g
w
ijxjg

)
γ +

(∑
j 6=i g

w
ijyjg

)
δ in the

model for yig. This allows that yig is affected by the explanatory variables of the other

individuals in group g, and by the outcomes of the other individuals in group g. Specifically,

the linear-in-means model assumes that explanatory variables of the other individuals in
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group g affect yig through the linear weighted sum ∑
j 6=i g

w
ijxjg and that outcomes of the other

individuals in group g affect yig through the linear weighted sum ∑
j 6=i g

w
ijyjg.

Therefore, gwij is a measure of the weighted social influence that individual j in group g has

on individual i in group g. These weighted social influences are derived from an underlying

network of connections amongst individuals in group g, represented by an adjacency matrix

g. By definition, gij = 1 means that individual j in group g is “connected to” individual i in

group g, and therefore has influence on individual i in group g. Conversely, gij = 0 means

that individual j in group g is “not connected to” individual i in group g, and therefore does

not have an influence on individual i in group g. Typically, these connections are friendships

or other social relations. This network is usually (but not always) assumed to be observed in

the data, so that gij reflects whether individual i in group g has nominated individual j in

group g as a social influence. Then, in the typical specification of the linear-in-means model,

(2) gwij =


0 if gij = 0

1∑
j 6=i

gij
if gij = 1

.

Consequently, in the typical specification of the linear-in-means model, ∑j 6=i g
w
ijxjg is the

average of the observable explanatory variables of the individuals that influence individual i

in group g, and ∑j 6=i g
w
ijyjg is the average of the outcomes of the individuals that influence

individual i in group g. Therefore, as motivates the name of the model, the outcome yig

depends linearly on the mean characteristics of the individuals that influence individual i in

group g.

The analysis of the linear-in-means model proceeds by writing the model at the group level

rather than the individual level, where group g has Ng individuals. Let Yg be the Ng × 1

vector that stacks the elements yig. Let Xg be the Ng ×K vector that stacks the vectors

xig for different individuals in different rows, where K is the dimension of the exogenous
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explanatory variables. Let εg be the Ng × 1 vector that stacks the elements εig. And let Gw

be the Ng ×Ng matrix of weighted social influence, with gwij in row i and column j.

Then,

Yg = 1Ng×1α +Xgβ +GwXgγ +GwYgδ + εg.

The standard linear-in-means model uses the assumption that Xg and Gw are mean indepen-

dent of the unobservables, in the sense that E(εg|Xg, G
w) = 0. The mean independence of Gw

from εg requires that friendship or link formation is suitably independent of the unobservables.

The corresponding reduced form, which expresses the endogenous outcomes of all individuals

in the group as a function of the exogenous variables of all individuals in the group, is

Yg = (I − δGw)−1
(
1Ng×1α +Xgβ +GwXgγ + εg

)
.

The existence of this reduced form depends on nonsingularity of I − δGw. As long as

|δ| < 1, I − δGw is strictly diagonally dominant, and therefore nonsingular. Therefore, using

the exogeneity assumption E(εg|Xg, G
w) = 0, it follows that

(3) E(Yg|Xg, G
w) = (I − δGw)−1

(
1Ng×1α +Xgβ +GwXgγ

)
,

and therefore

E(yig|Xg, G
w) = e′i(I − δGw)−1

(
1Ng×1α +Xgβ +GwXgγ

)
,

where ei is the unit vector of length Ng, with 1 as the i-th element and 0 as every other

element. By tracing out the effect of the exogenous explanatory variables on the outcomes, it

is possible to recover ∂E(yig |Xg ,Gw)
∂Xg

from the data. Applying matrix calculus rules,

(4) ∂E(yig|Xg, G
w)

∂Xg

= βe′i(I − δGw)−1 + γe′i(I − δGw)−1Gw.
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Per the standard convention, the (k, j) element of ∂E(yig |Xg ,Gw)
∂Xg

is ∂E(yig |Xg ,Gw)
∂xjkg

, the marginal

effect of the k-th explanatory variable of individual j on the outcome of individual i. Therefore,

the effect of Xg on the outcome depends in a complicated way on all of the model parameters,

β, γ, and δ, and also the weighted social influence matrix Gw. This reflects the fact that

manipulating Xg has three interrelated effects on yig.

First, the exogenous explanatory variables of individual i have a direct effect on the outcome

of individual i, per the parameter β. If γ = 0 and δ = 0, then ∂E(yig |Xg ,Gw)
∂Xg

= βe′i so this

would be the entire effect of the exogenous explanatory variables, with only individual i’s

exogenous explanatory variables having an effect on the outcome of individual i. However,

note that if γ 6= 0 and δ 6= 0, then β does not fully summarize the effect of the exogenous

explanatory variables of individual i on the outcome of individual i, because manipulating

the exogenous explanatory variables of individual i will influence the outcomes of the other

individuals in the group, which will influence the outcome of individual i. In other words, β

describes the “effect” of the exogenous explanatory variables of individual i on the outcome

of individual i “holding fixed” the outcomes of the other individuals, which generically would

also change in response to manipulating the exogenous explanatory variables of individual i.

Second, the exogenous explanatory variables of the other individuals have a direct effect

on the outcome of individual i, per the parameter γ and social influence matrix Gw. If δ = 0,

then ∂E(yig |Xg ,Gw)
∂Xg

= βe′i + γe′iG
w, so the exogenous explanatory variables of all individuals

affect the outcomes of other individuals as determined by Gw. As above, note that if δ 6= 0,

then β and γ and Gw do not fully summarize the effect of the exogenous explanatory variables

on the outcome of individual i, because manipulating the exogenous explanatory variables will

influence the outcomes of the other individuals in the group, which will influence the outcome

of individual i. In other words, β and γ and Gw describe the “effect” of the exogenous

explanatory variables on the outcome of individual i “holding fixed” the outcomes of the other

individuals, which generically would also change in response to manipulating the exogenous

explanatory variables.
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Third, the exogenous explanatory variables of all individuals have an indirect effect on

the outcome of individual i through their effects on the outcomes, and then the effects of

outcomes on other outcomes, according to the social influence matrix Gw and parameter δ.

In the data, only the combination of all of these effects of the exogenous explanatory

variables is observed. This suggests that the model parameters may not be point identified

under all conditions. Essentially, the question is whether the parameters β, γ, and δ can be

recovered from either the reduced form in Equation 3 or the marginal effects in Equation 4.

Specifically, suppose that the underlying network is such that all individuals in the group

have influence on all other individuals in the group, in the sense that gij = 1 for all i 6= j. This

could arise in empirical applications particularly if group membership but not connections

within a group are observed by the econometrician. Then,

(I − δGw)−1 = u−1
1 INg×Ng − u2u

−1
1 (u1 +Ngu2)−11Ng×Ng

where u1 = 1 + δ
Ng−1 and u2 = − δ

Ng−1 .

Then, the effect of the k-th explanatory variable of individual i on the outcome of individual

i is the same as the effect of the k-th explanatory variable of individual j on the outcome of

individual j, for all k and i, j. And, the effect of the k-th explanatory variable of individual

j on the outcome of individual i is the same as the effect of the k-th explanatory variable of

individual l on the outcome of individual i, for all k and i 6= j and i 6= l. Therefore, there

are a total of only 2K distinct effects of the explanatory variables, but 2K + 1 parameters

that determine the effects of the explanatory variables. Consequently, the model parameters

should not be expected to be point identified from these marginal effects.

In assorted variants of the specification of the linear-in-means model discussed here, both

Manski (1993) and Moffitt (2001) have established details of this source of non-identification

in the linear-in-means model. Manski (1993) referred to this source of non-identification
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as the “reflection problem,” based on the idea that it is difficult to distinguish between an

individual’s behavior and the behavior being “reflected” back on the individual.

The basic intuition for the identification analysis of the linear-in-means model comes

from thinking about the linear-in-means model as a system of simultaneous equations. If

all individuals influence all other individuals, then there are no exclusion restrictions in

the structural form of the outcome yig, from Equation 1, in the sense that all exogenous

explanatory variables of all individuals appear directly in the structural form of the outcome

yig. Therefore, since that specification of the model does not have any exclusion restrictions,

for similar reasons to identification analysis of general simultaneous equations model, the

parameters from that specification of the model are not point identified (e.g., Wooldridge

(2010, Chapter 9)).

Conversely, if not all individuals influence all other individuals, then there is an exclusion

restriction in the structural form of the outcomes, and therefore the potential for valid

instruments that could identify the parameters of the model. Specifically, suppose there is

an individual l such that gil = 0, so that individual l has no direct influence on individual i.

And suppose further there is an individual j such that gij = 1 and gjl = 1, so that individual

j has a direct influence on individual i and individual l has a direct influence on individual

j. Then, xlg does not appear directly in the structural form of the outcome yig, but xlg are

relevant instruments for the outcome yjg in the structural form of the outcome yig, since xlg

directly affects ylg, which therefore directly affects yjg since gjl = 1, which therefore directly

affects yig since gij = 1. This arrangement of the weighted social influences of individuals

i, j, and l is known as an intransitive triad, and was the source of identification studied by

Bramoullé, Djebbari, and Fortin (2009).

Specifically, Bramoullé, Djebbari, and Fortin (2009) formalize this identification strategy

and establish that an important (nearly) sufficient condition for point identification of assorted

variant specifications of the linear-in-means model is that I, G, and G2 (and G3 in some

specifications) are linearly independent. If indeed there is the intransitive triad involving



ECONOMETRIC ANALYSIS OF MODELS WITH SOCIAL INTERACTIONS 9

individuals i, j, and l, then it would follow that the (i, l) element of G2 is strictly positive,

since by applying the standard formula for matrix multiplication, that element of G2 is weakly

greater than gijgjl, which is 1. Equivalently, since the (i, l) element of G2 counts the number

of paths of length two between individual i and l, it is at least 1, because of the path going

through individual j. But the (i, l) element of I is 0 since i 6= l, and the (i, l) element of G

is 0, since gil = 0. Therefore, any linear combination of I and G would also have 0 as the

(i, l) element, so G2 cannot be a linear combination of I and G, and hence I, G, and G2 are

linearly independent. See also De Giorgi, Pellizzari, and Redaelli (2010).

An important consideration in the application of these identification strategies is whether

or not this linear independence condition holds. It is a stylized fact that social networks tend

to exhibit triadic closure, otherwise known as transitivity of links or clustering, as in “the

friend of my friend is my friend.” In other words, if two “sides” of a triad are present in a

network, then the third “side” is likely to also be present. Therefore, although intransitive

triads generically do exist in social networks, leading to the linear independence required

above, they are less frequent than if links in the network formed independently without

clustering. Another important consideration in the application of this identification strategy

is whether or not there is sufficient intransitive triads to result in precise estimates.

Other sources of identification are also possible in the linear-in-means model. Lee (2007)

and Davezies, d’Haultfoeuille, and Fougère (2009) show that variation in group size can

result in point identification, in particular even if all individuals within a group influence

all other individuals within that group, so that there are no intransitive triads as discussed

above. The intuition for why variation in group size can result in point identification is

evident in the marginal effects from the linear-in-means model in Equation 4. Even if G

involves connections between all individuals in the group, variation in group size implies

that Gw would be different for groups of different size. Hence, the effect of the exogenous

explanatory variables on outcomes is different in groups of different sizes, providing additional

sources of identification of the model parameters from the marginal effects in different group
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sizes. For example, in an extreme case of groups of size one, the effect of the exogenous

explanatory variables would not involve any of the social interaction parameters, providing

identification of the other parameters. An important consideration in the application of this

identification strategy is whether or not it is reasonable to assume that the same model

parameters apply to all group sizes. Another important consideration in the application

of this identification strategy is whether or not there is sufficient variation in group size to

result in precise estimates. In particular, if all groups are relatively large, then “variation”

in group size may have a small impact on the marginal effects of the explanatory variables,

potentially resulting in imprecise estimates. Specifically, approaches that rely on variation in

group size can suffer from weak identification and weak instruments problems, in the sense

of the inability of standard asymptotic analysis to capture finite sample behavior. Blume,

Brock, Durlauf, and Jayaraman (2015) show a connection between groups of equal size and

the condition that I, G and G2 are linearly dependent (stacking groups into one network),

as discussed also in de Paula (2016). Therefore, identification can be weak unless there is

enough heterogeneity in the number of individuals per group. This chapter leaves out these

issues of statistical inference.

Besides identification analysis, it is useful to note that the linear-in-means model can be

interpreted as the equilibrium of a certain game with quadratic utility functions. Specifically,

consider the utility function for individual i in group g given by

uig(yig, y−ig) = θigyig −
(1− δ)y2

ig

2 − δ

2(yig − ζig)2,

with corresponding first order condition that implies the response function

yig = θig + δζig,
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which is the linear-in-means model from Equation 1 with θig = α+xigβ+
(∑

j 6=i g
w
ijxjg

)
γ+ εig

and ζig = ∑
j 6=i g

w
ijyjg. Hence, the linear-in-means model may be interpreted as a game

with quadratic utility functions, where each unit of outcome provides the individual with

“individual” utility θig, where the “cost” of the outcome is (1−δ)y2
ig

2 , and where individuals

want to conform their outcome to the aggregate outcome ζig according to the parameter δ
2

when δ > 0 and “non-conform” their outcome to the aggregate outcome ζig according to

the parameter δ
2 when δ < 0. Therefore, in the leading case of δ > 0, perhaps as expected

given Equation 1, the linear-in-means model involves a preference for conformity of outcomes,

which results in a particular linear relationship between outcomes. Of course, positive affine

transformations of this utility function would also result in the linear-in-means model. See

also Blume, Brock, Durlauf, and Jayaraman (2015) for a similar analysis for incomplete

information versions of the linear-in-means model.

Other details of the specification of the linear-in-means model are important considerations

in empirical applications. For example, the econometrician may specify the functional form of

Gw as a function of G in at least two leading ways. In the typical specification, as discussed

above through Equation 2, the structural equation for yig in Equation 1 depends on the

average outcome of the individuals that influence individual i. Therefore, for example, if

the outcome is the number of cigarettes smoked, then individual i is affected by the average

number of cigarettes smoked by the individuals that influence individual i. Consequently,

an individual with 1 friend that smokes 10 cigarettes is influenced equally to an individual

with 2 friends that each smoke 10 cigarettes. In an alternative specification, gwij = gij, so

that the structural equation for yig in Equation 1 depends on the summed outcome of the

individuals that influence individual i. Consequently, an individual with 1 friend that smokes

10 cigarettes is less influenced than an individual with 2 friends that each smoke 10 cigarettes.

Liu, Patacchini, and Zenou (2014) consider a variant of the linear-in-means model that

includes both modes of interactions.
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Another important consideration in the specification of the linear-in-means model is

whether the social interaction happens through the actual realized outcomes or the expected

outcomes. As specified above in the structural equation for yig in Equation 1, yig depends on

the actual realized yjg. Alternatively, yig could be given a structural equation that depends

on the expected value of the outcomes of the individuals that influence individual i. Viewing

the linear-in-means model as a game, this corresponds respectively to a game of complete

information and a game of incomplete information. Games of incomplete information may be

more appropriate for social interactions among relatively large groups of relatively anonymous

individuals, where the condition that individuals have private information may be more

realistic. Games of complete information may be more appropriate for social interactions

among relatively small groups of individuals, where the condition that individuals do not

have private information may be more realistic. Further, pure strategy Nash equilibria of

a game of complete information have the feature that the equilibrium outcomes are also in

ex-post equilibrium, in the sense that by definition the individuals would not want to change

their outcome even after observing the outcomes of the other individuals, making it a possible

approximation to a long-run equilibrium of a dynamic process. By contrast, equilibria of a

game of incomplete information tend to not involve realizations of equilibrium outcomes that

are in ex-post equilibrium, in these sense that generally individuals would want to change

their outcome after observing the realized outcomes of the other individuals.

It may be desirable also to incorporate unobserved group fixed effects, which can allow

that outcomes depend on some features of the group shared by all individuals in the group

and unobserved by the econometrician. Graham and Hahn (2005) show how to analyze

identification of the linear-in-means model with group fixed effects using panel data methods,

viewing the “cross-sectional” dimension as the groups and the “time” dimension as individuals

in the groups. Bramoullé, Djebbari, and Fortin (2009) require further conditions on G to

accommodate such group fixed effects.
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Finally, it may be desirable to allow heterogeneity in the social interaction effects, which

can allow that different pairs of individuals have different influences on each other. Masten

(2017) shows identification results for a system of simultaneous equations model, and applies

these results to the linear-in-means model.

2.2. Non-linear models. The linear-in-means model hypothesizes a particular linear rela-

tionship between the outcome of an individual and the outcomes of the other individuals in

the group. Non-linear models hypothesize a non-linear relationship instead.

One motivation for using non-linear models of social interactions is to reduce the dependence

on the implicit assumptions imposed by the linear-in-means model. As discussed in more

detail in Section 3, the linear-in-means model is an example of a model of social interactions

that makes a variety of behavioral assumptions that do not necessarily apply to all empirical

applications. The linear model of a conditional expectation can be viewed as an approximation

to a wide class of possibly non-linear conditional expectations, indeed even if the outcome

is binary as in the linear probability model. However, the linear-in-means model does not

share those same approximation properties, because it also involves assumptions about the

nature of the social interaction. These issues are particularly salient when the outcome

is discrete rather than continuous. For example, as discussed in more detail in Section 3,

social interactions with discrete outcomes should be generally expected to involve issues like

multiple equilibria, which is not a feature of the linear-in-means model, suggesting that it

may not be a good approximation to settings with discrete outcomes.

Often, non-linear models applicable to social interactions are based on game theory, often

when the outcome of the social interaction is discrete or even binary, and begin with a

specification of the utility function. In these models, the outcome is the actions taken by

individuals in the game. Consider for example a model of a social interaction when the
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outcome is binary, with utility functions given by

uig(1, y−ig) = α + xigβ +
∑
j 6=i

gwijyjg

 δ + εig and uig(0, y−ig) = 0.

Thus, individual i is normalized to get 0 utility from taking action 0, and gets utility from

taking action 1 that is similar to the specification of the linear-in-means model. Importantly,

the exogenous explanatory variables of the other individuals in the group do not affect

the utility of individual i, because they are generally used as excluded variables in the

identification strategies. However, it would be possible to allow some but not all exogenous

explanatory variables of other individuals to affect the utility of individual i, or to allow

some exogenous explanatory variables to affect the utility of all individuals, by including

those factors in xig. If δ > 0, then the utility individual i gets from taking action 1 increases

as a function of ∑j 6=i g
w
ijyjg, so that for example the utility from smoking increases as a

function of the smoking decisions of the other individuals in the group. Such models have

been considered by Bresnahan and Reiss (1991), Berry (1992), Tamer (2003), Krauth (2006),

Soetevent and Kooreman (2007), Ciliberto and Tamer (2009), Bajari, Hong, and Ryan (2010),

Fox and Lazzati (2016), Kline (2016), and in particular Kline (2015) includes the focus on

application to social interactions by including the network interaction structure into the

utility function. Similar models, except with incomplete information, have been considered

by Brock and Durlauf (2001, 2007), Aradillas-Lopez (2010, 2012), Bajari, Hong, Krainer, and

Nekipelov (2010), Tang (2010), Xu (2011), Grieco (2014), Lee, Li, and Lin (2014), Wan and

Xu (2014), and Lewbel and Tang (2015). See also for example Berry and Tamer (2006) or

Berry and Reiss (2007). Note that many of these models do not explicitly allow for a network

to affect the utility functions, in which case the assumption would be that all individuals

within a group affect all other individuals within that group. Such models may still be

directly applicable to social interactions, and such models are without loss of generality if
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the social interaction concerns pairs of individuals (e.g., Card and Giuliano (2013) for “best

friend” pairs).

Models of social interactions based on game theory also require the specification of a

solution concept, a behavioral assumption that describes the predicted outcome of the model

as a mapping from the utility functions. Even strong behavioral assumptions like pure strategy

Nash equilibrium results in multiple equilibria outcomes, in which case the model only predicts

that the outcome of the social interaction lies within some set of possible equilibria, but does

not predict the outcome uniquely. Using weaker behavioral assumptions like mixed strategy

Nash equilibrium or rationalizability would only exacerbate the multiplicity of outcomes. See

also Section 3 for more discussion of the possibility of multiple equilibria in social interactions.

Consider the basic intuition for the most common identification strategy for these models,

when the social interaction involves the outcome of whether individuals smoke cigarettes. In

general, such models could result in multiple potential equilibrium outcomes for any given

specification of utility functions. For example, consider a social interaction among pairs

of friends. For a particular specification of utility functions, it could be an equilibrium for

neither individual to smoke cigarettes, if both individuals find it undesirable to smoke alone.

For the same specification of utility functions, it could also be an equilibrium for both to

smoke cigarettes, if both individuals find it desirable to smoke alongside a friend despite not

finding it desirable to smoke alone.

Despite these complications, it is possible to point identify the utility parameters if there

is at least one exogenous explanatory variable per individual that appears exclusively in that

individual’s utility function. If so, those explanatory variables can be used to exogenously

drive the smoking decisions of all other individuals, relative to some specific individual i. In

particular, by taking particularly extreme values of those explanatory variables, the smoking

decisions of the other individuals can be taken to be essentially exogenously either to smoke

or not to smoke. Equivalently, this overcomes the problems relating to multiple equilibria,

because it results in dominant strategies to either smoke or not to smoke, as appropriate
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depending on whether the exogenous explanatory variables of the individuals other than i are

taken to be extremely positive or to be extremely negative. By tracing out the effect of those

“exogenous” smoking decisions on the smoking decision of the individual i, it is possible to

identify the utility parameters for that individual i.

Hence, an important consideration in the application of such an identification strategy is

whether or not the application actually does have such a large support explanatory variable.

Identification based on large support in these games are subject to similar concerns as in

other areas of econometrics. Under weaker assumptions, the model parameters may only be

partially identified, as in Aradillas-Lopez and Tamer (2008), Ciliberto and Tamer (2009),

Beresteanu, Molchanov, and Molinari (2011), Kline (2015), or Kline and Tamer (2016).

Note that these identification strategies do not rely on the same restrictions on the network

as do the identification strategies for the linear-in-means model in Section 2.1. Instead,

these identification strategies rely on exogenous explanatory variables that each affect a

specific individual but are excluded from the utility functions of all other individuals. So

the exclusion restriction used in the linear-in-means model comes from the structure of the

network, whereas the exclusion restriction used in the models of games comes from more

standard excluded regressors.

Most of the literature on social interactions has focused on models that ignore the timing

of the outcomes subject to social interactions. However, some social interactions are mainly

about the timing of taking an action. For example, married couples might prefer to coordinate

the timing of their retirement decisions (e.g., Honoré and de Paula (2011)). de Paula (2009)

and Honoré and de Paula (2010) study a duration model with social interactions. An intuition

for an identification strategy for such models is that social interactions in timing should

result in simultaneous timings (e.g., simultaneous retirements) that could not be explained

otherwise.
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2.3. Response functions. Manski (2013) and Lazzati (2015) study partial identification

of the response function that expresses the outcome of an individual as a function of the

treatments of all individuals in the individual’s reference group. Thus, generically, the

response function yig(·) relates the outcome of individual i in group g to the treatment dig

of individual i in group g and the treatments d−ig of other individuals in group g. Such

models do not explicitly model the possibility that outcomes are affected by the outcomes

of other individuals. However, under certain assumptions, these response functions could

be interpreted as the “reduced form” that maps the treatments to the outcomes, with an

un-modeled intervening stage in which outcomes affect other outcomes. For example, in the

context of the linear-in-means model, this reduced form would correspond to Equation 3.

However, as discussed in more detail in Section 3, such a reduced form does not exist in

all models. For example, if the social interaction induces multiple equilibria, then it is not

possible to associate a unique outcome to particular profiles of treatments, since depending

on the equilibrium that is selected, different outcomes are possible.

Identification of the response function faces the fundamental problem of causal inference.

An individual’s response function is observed at the observed profile of treatments, but is not

observed at any other counterfactual profile of treatments. Therefore, similar to identification

of response functions in the abscence of any social interactions (e.g., Manski (1997), Manski

and Pepper (2000, 2009), Okumura and Usui (2014)), shape restrictions help to tighten the

identified bounds on the response functions. For example, it can be assumed that the outcome

of each individual is a weakly monotone function of the treatment(s) of all individuals in the

group, which tightens the identified bounds. Such bounds would allow the econometrician to

conclude, for example, bounds on the probability that a randomly selected individual would

smoke as a function of a specified (possibly counterfactual) arrangement of policy intervention

treatments affecting the individual and each of the individual’s friends.

Kline and Tamer (2012) study partial identification of the best responses in complete

information binary games. These games involve the decision between two possible actions
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per individual. The best response function describes the utility maximizing decision of a

particular individual as a function of any counterfactual specification of decisions of the other

individuals. Thus, generically, the response function yig(·) relates the utility maximizing

outcome of individual i in group g to the outcomes y−ig of other individuals in group g. For

example, the best response function could be an individual’s utility maximizing decision of

whether or not to smoke cigarettes, as a function of the smoking decisions of the individual’s

friends. Under a variety of behavioral assumptions, including Nash equilibrium assumptions

and non-equilibrium assumptions like level-k rationality, interval bounds on these best

response functions can be derived and therefore estimated based on the literature on interval

identified parameters. Such bounds would allow the econometrician to conclude, for example,

bounds on the probability that a randomly selected individual would smoke as a function of

a specified (possibly counterfactual) arrangement of smoking decisions of the individual’s

friends. The identification result depends on the specific set of assumptions maintained, but

the intuition for the identification strategy is always to ask what an observed set of decisions

must necessarily imply about the utility function, and therefore about utility maximizing

decisions. For example, suppose the game models the decision to smoke cigarettes, and

suppose the econometrician assumes that there is a positive peer effect, in the sense that

a peer smoking increases the utility from smoking. Suppose, for simplicity of exposition,

that the “peer group” is a pair of friends. And suppose a particular individual is observed

to smoke, despite the friend in the pair not smoking. What would happen if the friend in

the pair started smoking? It is possible to conclude that individual would also smoke if the

friend in the pair smoked, under appropriate behavioral assumptions and the maintained

assumption of a positive peer effect, since if it was already utility maximizing to smoke with

a friend that does not smoke, it would also be utility maximizing to smoke with a friend that

does smoke.
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2.4. Causal impacts of treatments mediated through networks. In standard models

of treatment response in which treatments are assigned and outcomes are observed at the

assigned treatments, it may be of interest to learn how much of the treatment effect is

mediated through the network. For example, if some treatment is assigned at random to

individuals within a group, then it is possible to learn the group treatment effect. But, how

much of this effect is due to the network of connections within the group? This mediated

treatment effect can be examined in the context of (endogenous) networks. The approach in

this section adapts the counterfactual notation approach to studying networks that is more

common in the study of randomized experiments and abstracts away from the economics

of games, multiple equilibria, best response functions, and other similar issues discussed

elsewhere in this chapter. This approach is built toward estimating average treatment effects

or similar objects. This approach is complementary to the “economic” approach taken in

Section 3, where interest is focused on best response functions directly related to utility

functions in the context of an economic model.

Let the outcome for individual i be yi, which is determined by a response function according

to

yi = f(di, Gi, εi),

where f is the response function, di is the binary treatment of individual i, Gi is the network

(or some network summary statistic) for individual i, and εi is an arbitrary unobservable for

individual i. Also, network Gi is determined by a response function according to

Gi = m(di, ηi),

where ηi is an arbitrary unobservable for individual i.

The functions f(·) and m(·) are not best response functions in a game theoretic sense

as in Section 3, since they encode a selection mechanism that fills in an equilibrium choice.

For example, the network formation model may have multiple equilibria, but the function
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G = m(d, η) delivers a unique network G. The unobservable η therefore must involve the

unobserved role of a selection mechanism. For example, if the selection mechanism is modeled

as a coin flip, then η must capture the unobserved “outcome” of that coin flip. So, these

functions are statistical relationships that can be used to define average treatment effects.

Whether these average treatment effects or these response functions are useful is application

specific.

In counterfactual notation, the “overall” treated outcome is

yi(1) = f(1,m(1, ηi), εi)

and the “overall” untreated outcome is

yi(0) = f(0,m(0, ηi), εi).

Similarly, define the counterfactuals that separately specify the treatment and network as

yi(d,G) = f(d,G, εi).

The subsequent analysis can be conditioned on predetermined variables, and it is assumed

that (y, d,G) are observed. In this setup, in addition to the standard “overall” average

treatment effect

ATE ≡ E(yi(1)− yi(0)) = E (f(1,m(1, ηi), εi)− f(0,m(0, ηi), εi)) ,

there is the direct treatment effect at some fixed network G0,

DTE(G0) ≡ E(yi(1, G0)− yi(0, G0)) = E (f(1, G0, εi)− f(0, G0, εi))

and the indirect treatment effect at some fixed treatment d0,

ITE(d0) ≡ E(yi(d0,m(1, ηi))− yi(d0,m(0, ηi))) = E (f(d0,m(1, ηi), εi)− f(d0,m(0, ηi), εi)) .
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The direct treatment effect is the “effect” of the treatment on the outcome, holding fixed

the network at some fixed/predetermined G0. The indirect treatment effect is the “effect” on

the outcome in response to a change in the network in response to a change in the treatment,

holding fixed the “direct” treatment received by the individual at some fixed d0.

2.4.1. Identification with random assignment of treatment. When the treatment d is randomly

assigned, in the sense that (ε, η) ⊥ d, the “overall” average treatment effect can be point

identified in the standard way:

ATE ≡ E(y(1)− y(0)) = E (f(1,m(1, η), ε)− f(0,m(0, η), ε)) = E(y|d = 1)− E(y|d = 0).

This is the “overall” effect of the treatment on the outcome. This allows the individuals to

choose other actions or choose a different network in the intervening stages. Now, consider

the direct treatment effect, DTE(G0). The data reveal:

E(y|d = 1, G0) = E(f(1, G0, ε)|m(1, η) = G0)

E(y|d = 0, G0) = E(f(0, G0, ε)|m(0, η) = G0).

It is difficult to learn anything beyond this, and especially it is difficult to learn the di-

rect treatment effect, without further assumptions even when d is randomly assigned

unless η is independent of ε. It possible to get the worst case bound as follows. For

simplicity, suppose that G ∈ {G0, G1}. Then, using total probability, E(f(1, G0, ε)) =

E(f(1, G0, ε)|d = 1, G = G0)P (1, G0)+E(f(1, G0, ε)|d = 1, G = G1)P (1, G1)+E(f(1, G0, ε)|d =

0, G = G0)P (0, G0) + E(f(1, G0, ε)|d = 0, G = G1)P (0, G1), with a similar expression for

E(f(0, G0, ε)), and only the underlined quantities can be point identified directly from the

data. A similar analysis is also possible for DTE(G1).

There are other approaches to identification, motivated by the large literature on partial

identification in treatment response models. See also Manski (2013) or Lazzati (2015).

Simple bounds can be obtained via exclusion restrictions. Again, for simplicity, suppose that
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G ∈ {G0, G1} and suppose there exists a binary instrumental variable Z ∈ {Z0, Z1} such that

Gi = m(di, Zi, ηi).

Let the following exclusion restriction hold

f(d,G, Z, ε) ≡ f(d,G, ε) and (ε, η) ⊥ (d, Z)

and assume the relevance condition that m(d, Z, η) is a nontrivial function of Z. Then, the

exclusion restriction and random assignment of treatment implies for any given s that

P (y(1, G1) ≤ s) = P (y(1, G1) ≤ s|d = 1, Z)

≤ P (y(1, G1) ≤ s|d = 1, G1, Z)P (G1|d = 1, Z) + (1− P (G1|d = 1, Z))

= P (y ≤ s|d = 1, G1, Z)P (G1|d = 1, Z) + (1− P (G1|d = 1, Z)),

which implies that

P (y(1, G1) ≤ s) ≤ min
Z∈{Z0,Z1}

P (y ≤ s|d = 1, G1, Z)P (G1|d = 1, Z) + (1− P (G1|d = 1, Z)).

And similarly,

P (y(1, G1) ≤ s) ≥ max
Z∈{Z0,Z1}

P (y ≤ s|d = 1, G1, Z)P (G1|d = 1, Z).

Similar bounds can be derived on the distribution functions of y(1, G0), y(0, G0), and y(0, G1).

If point identification is required, it is possible to “reverse engineer” a parameter that is

point identified. This is done through a choice model via the reduced forms:

E(y|d = 1, Z1) = E(f(1, G1, ε)1 [η ∈ A1(1, Z1)] + f(1, G0, ε)1 [η ∈ Ac1(1, Z1)])

E(y|d = 1, Z0) = E(f(1, G1, ε)1 [η ∈ A1(1, Z0)] + f(1, G0, ε)1 [η ∈ Ac1(1, Z0)])
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where A1(1, Z1) and A1(1, Z0) are the regions for η derived from the network formation model

that result in the network G1, at Z = Z1 and Z = Z0 respectively, when the treatment is

d = 1. Similarly, A1(0, Z1) and A1(0, Z0) would be regions for when the treatment is d = 0.

This can be equivalently written as:

E(y|d = 1, Z1) = E((f(1, G1, ε)− f(1, G0, ε))1 [η ∈ A1(1, Z1)]) + E(f(1, G0, ε))

E(y|d = 1, Z0) = E((f(1, G1, ε)− f(1, G0, ε))1 [η ∈ A1(1, Z0)]) + E(f(1, G0, ε)),

which yields

E(y|d = 1, Z1)− E(y|d = 1, Z0) = E ((f(1, G1, ε)− f(1, G0, ε)) (1 [η ∈ A1(1, Z1)]− 1 [η ∈ A1(1, Z0)])) .

Going further requires assumptions on the network formation model. One possibility is

the model of Vytlacil (2002) (see also Imbens and Angrist (1994)) with a unidimensional

unobservable (i.e., with monotonicity) as the network formation model. In particular, assume

that Gi = 1[ηi ≤ g(di, Zi)] where ηi is a scalar unobservable. Then, A1(d, Z1) = {η :

η ≤ g(d, Z1)} and A1(d, Z0) = {η : η ≤ g(d, Z0)} and so taking for example the case of

g(1, Z0) ≤ g(1, Z1),

1 [η ∈ A1(1, Z1)]− 1 [η ∈ A1(1, Z0)] = 1[g(1, Z0) < η ≤ g(1, Z1)].

These can be known as the complier networks when treatment is d = 1. Hence,

E(f(1, G1, ε)−f(1, G0, ε)|g(1, Z0) < η ≤ g(1, Z1)) = E(y|d = 1, Z1)− E(y|d = 1, Z0)
P (G = G1|d = 1, Z1)− P (G = G1|d = 1, Z0)

And so, this local average indirect treatment effect for network compliers, for when treatment

is d = 1, is point identified. Similar steps can be taken for when treatment is d = 0.
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It is not clear in general whether such a network formation model with a scalar unobservable

is relevant. In particular, in networks with many decision makers, it is harder to obtain

network formation models with scalar unobservables.

2.4.2. Identification without random assignment of treatment. Without random assignment

of treatment, it is even more difficult to identify the direct and indirect treatment effects

without further assumptions, because unobservables or confounders can be influencing both

treatment selection and interim network formation or network changes. Aside from worst

case bounds, one approach is to make assumptions from the empirical games literature. In

particular, assume that there exists a binary variable Z ∈ {Z0, Z1} such that

(Z = Z1) =⇒ (G = G1) and (Z = Z0) =⇒ (G = G0)

and Z is independent of (ε, η). This approximates the idea of “identification at infinity,”

whereby a certain explanatory variable can drive the decision making. For example, in models

of airline markets, Z could be an indicator of whether a market is particularly profitable,

and when that is the case a particular network arises (e.g., all potential entrants serve the

market). These conditions render network formation exogenous conditional on these values of

the variable Z, in which case the identification problem reverts back to a standard treatment

response model. For example, without any further assumptions, it is possible to derive the

standard worst case bounds on DTE(G0) and DTE(G1). These bounds can be tightened,

for example by adding monotonicity assumptions on treatment response, like assuming that

yi(1, G0) ≥ yi(0, G0) and yi(1, G1) ≥ yi(0, G1). It is also possible to have another instrument

W ∈ {0, 1}, satisfying the exclusion restriction that

f(d,G,W, ε) ≡ f(d,G, ε) and ((ε, η) ⊥ W )|Z,

in which case it is possible to identify the local average direct treatment effect for compliers

in a model with a scalar/monotone unobservable. This use of double instruments (one for
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network formation and another for the usual treatment selection problem) can be used to

identify the direct effect and the indirect effect.

2.5. Other approaches to identification. In some applications, detecting the existence

(and direction) of a social interaction effect, but not the magnitude of the social interaction

effect, may be an object of interest. It is possible to do so under weaker conditions than are

used to identify the magnitude of the social interaction effect. In the context of various game

theory models that could be used to model a social interaction, this identification problem

has been addressed by de Paula and Tang (2012) and Kline (2016).

de Paula and Tang (2012) applies to incomplete information games. Consider the basic

intuition for the de Paula and Tang (2012) identification strategy as applied to social

interactions in the decision to smoke cigarettes. In equilibrium, the individuals will tend to

either make similar (positively correlated) smoking decisions if there is a positive effect of

a peer smoking on the utility from smoking, or dissimilar (negatively correlated) smoking

decisions if there is a negative effect of a peer smoking on the utility from smoking. Hence,

the direction of the peer effect is identified by the sign of the correlation in smoking decisions

across peers.

Kline (2016) applies to complete information games. Consider the basic intuition for the

Kline (2016) identification strategy as applied to social interactions in the decision to smoke

cigarettes. Increasing the level of an excluded instrument that affects the utility an individual

gets from smoking cigarettes but not the utility function of the other individual will (despite

the complications in a game, like multiple equilibria) tend to increase the probability that

individual smokes cigarettes. Then, as a consequence, in equilibrium, the other individual

will either increase or decrease the probability of smoking cigarettes, depending on whether

there is a positive effect of a peer smoking on the utility from smoking or a negative effect of

a peer smoking on the utility from smoking.
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Most identification analysis of models of social interactions, particularly in the context of

continuous outcomes like variants of the linear-in-means models, focuses on mean outcomes.

However, higher order moments of the outcomes, particular variances, can also be informative

about social interactions. Graham (2008) shows that comparing between-group variation

in outcomes, between large and small groups, to the within-group variation in outcomes,

between large and small groups, is informative about social interaction effects, under suitable

random assignment assumptions. The intuition for this identification strategy is that social

interactions will tend to “amplify” the differences in outcomes when comparing between

groups rather than comparing within groups.

It is also possible to use random or quasi-random variation to identify models of social

interactions. For example, Sacerdote (2001) uses random assignment of roommates and

dormmates to investigate social interactions in college GPA and other educational outcomes.

Or for example, Imberman, Kugler, and Sacerdote (2012) uses inflows of evacuees from

Hurricane Katrina into receiving schools to study impacts on incumbent students.

3. Specification of models of social interactions

3.1. Empirical individual treatment response. An important consideration in the spec-

ification of an econometric model of social interactions is whether or not the model (and

empirical setting) satisfies the assumption of empirical individual treatment response (EITR):

Definition 1. Consider a model with response functions yig(y−ig,dg), which is the response

of individual i in group g, where y−ig is a possibly counterfactual specification of the outcomes

of the other individuals in group g and dg is a possibly counterfactual specification of the

treatments of all individuals in group g. The model satisfies empirical individual treatment

response, or EITR, if the data satisfy yig = yig(Y−ig, Dg), where yig is the actual outcome of

individual i in group g, Y−ig are the actual outcomes of the other individuals in group g, and

Dg are the actual treatments of all individuals in group g.
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This assumption relates the model to the data. As above, the response function is the object

of interest, so the EITR assumption relates the data to the object of interest. If there were no

social interaction, then this assumption is standard and uncontroversial: the response function

at treatment d for individual i is observed if i is treated with d. In contrast, the assumption

of EITR in models with social interaction entails implicit behavioral assumptions that are

not necessarily implied by economic theory. Note that by construction, the specification of

the linear-in-means model discussed in Section 2.1 satisfies EITR. Therefore, any criticism

of models that satisfy EITR apply in particular to that specification of the linear-in-means

model. The terminology individual treatment response refers to the fact that, from the

perspective of each individual, the individual is “treated” by the treatments of all individuals

in the group and the outcomes of the other individuals in the group.

Before analyzing the EITR assumption, it is necessary and nontrivial to make the as-

sumption that such a response function even exists as an autonomous relationship between

outcomes and treatments (e.g., Wooldridge (2010, Section 9.1)). Hence, in this chapter, and

in analogy to the standard interpretation of response functions without social interactions, it

is supposed that the response function gives the utility maximizing “response” of individual

i in group g to being “treated” with the treatments of all individuals in the group and the

outcomes of the other individuals in the group. This sort of response function was the focus

of Kline and Tamer (2012), as discussed in Section 2.3.

EITR can be too strong in models with social interactions because it imposes the assumption

that the observed outcome of each individual i is the response to the observed outcome of

individuals −i. Viewing the model of the social interaction as a game theory model, so that

the outcomes yg are determined as the outcome of a game theory model, this is essentially

the definition of pure strategy Nash equilibrium play with complete information.

It is well known that pure strategy Nash equilibrium with complete information often is not

a reasonable characterization of actual behavior in some settings (e.g., Camerer (2003)). Even

with the maintained assumption of complete information, many alternatives to pure strategy



28 ECONOMETRIC ANALYSIS OF MODELS WITH SOCIAL INTERACTIONS

Nash equilibrium play are entertained both in the theoretical game theory literature and also

the experimental literature. Among many other examples this includes mixed strategy Nash

equilibrium, rationalizability (i.e., Bernheim (1984) and Pearce (1984)), quantal response

(i.e., McKelvey and Palfrey (1995)), and models of “bounded reasoning” (i.e., Camerer, Ho,

and Chong (2004) and Costa-Gomes and Crawford (2006)). Conceivably, individuals might

also randomize over the decision rule / solution concept that they use, as explored in Kline

(2017). This would also lead to similar issues.

For example, if mixed strategies are used, then it is possible even in Nash equilibrium play

for the condition that yig = yig(Y−ig, Dg) to be false, since with mixed strategies it is possible

that the realizations of the mixed strategies do not (considered as pure strategies) comprise

mutual best responses. In many games that could be used to model social interactions, it

is not reasonable to rule out mixed strategies, because many games do not have a Nash

equilibrium in pure strategies, and in others it may be “reasonable” that when there are

multiple equilibria the mixed strategy equilibrium is selected.

The assumption of complete information is also a strong assumption. The assumption of

EITR rules out incomplete information basically for the same reason that it rules out mixed

strategies: if there is incomplete information then it is possible even in a Bayesian Nash

equilibrium in which each type plays a pure strategy for the condition that yig = yig(Y−ig, Dg)

to be false, since with incomplete information each individual is effectively interacting with

other individuals using mixed strategies induced by the distribution over types. Therefore,

the choice of yig in the data may not actually be made with knowledge of the choices of Y−ig of

the other individuals. In contrast, in models without social interactions, the econometrician

observes the response to the realized treatment, for essentially any plausible specification of

how that treatment is selected.

3.2. Empirical group treatment response. Another possible specification of the response

function expresses the outcomes of all individuals in the group as a function of the exogenous
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treatments of all individuals in the group. Thus, generically, this specification of the response

function yig(·) relates the outcome of individual i in group g to the treatment dig of individual

i in group g and the treatments d−ig of other individuals in group g.

This is relatively more similar to a standard response function in models without social

interactions, but with vector outcomes and treatments. The model of the social interaction

presumably places additional structure on this response function.

As with the assumption that the response function even existed in the previous section,

it is an assumption that the social interaction process has a unique outcome, as a function

of the profile of exogenous treatments. This specification of the response function does not

reveal anything about the mechanism of the social interaction, but nevertheless can be the

object of interest when the question is the relationship between exogenous treatments and

outcomes. This sort of response function was the focus of Manski (2013) and Lazzati (2015),

as discussed in Section 2.3.

The assumption of empirical group treatment response (EGTR) is the assumption that

Yg = yg(Dg) in the data. As with EITR, in models with social interaction this assumption

involves implicit behavioral assumptions that are not necessarily implied by economic theory.

Definition 2. Consider a model with a group response function yg(dg), which is the response

of all individuals in group g, where dg is a possibly counterfactual specification of the

treatments of all individuals in group g. The model is said to satisfy empirical group

treatment response, or EGTR, if the data satisfies Yg = yg(Dg), where Yg are the actual

outcomes of all individuals in group g and Dg are the actual treatments of all individuals in

group g.

The terminology group treatment response refers to the fact that, from the perspective of

the entire group, the group of individuals is “treated” by the treatments of all individuals in

the group.
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EGTR implicitly entails the assumption of a unique equilibrium of the social interaction

process. Otherwise, if there are multiple equilibrium outcomes, there are multiple potential

outcomes for the group for certain profiles of treatments d. And, indeed, in many settings of

social interaction there are multiple equilibria according to reasonable solution concepts, like

Nash equilibrium. Similarly, EGTR entails the assumption of the use of pure strategies in the

social interaction process, although not necessarily in Nash equilibrium. If there were mixed

strategies, then again there could be multiple potential outcomes even for a fixed profile of

treatments d. Therefore, in general yg(dg) is a correspondence rather than a function, so

Yg ∈ yg(Dg) but not Yg = yg(Dg). Note that the “reduced form” of the linear-in-means model

in Equation 3 shows that the linear-in-means model does satisfy EGTR.

3.3. Recap. Consequently, in models with social interactions, EITR and EGTR can imply

significant assumptions on behavior that are not necessarily implied by economic theory.

Many models, including the linear-in-means model, satisfy these assumptions, and therefore

imply these signification assumptions on behavior.

The next section illustrates these considerations by a concrete example of a setting with

social interactions. Note that neither of EITR and EGTR necessarily implies the other. EITR

can hold while EGTR fails if there is an interaction with pure strategy Nash equilibrium play

with complete information and multiple equilibria. EGTR can hold while EITR fails if there

is a unique potential outcome according to some solution concept that describes the behavior

of the group, but the outcome is not comprised of mutual best responses considered as pure

strategies. For example, if there is non-equilibrium behavior, then there can still be a unique

potential outcome for the group so EGTR holds. But in general non-equilibrium behavior

does not comprise mutual best responses considered as pure strategies, so EITR fails. EITR

and EGTR can both hold if there is a unique pure strategy Nash equilibrium with complete

information. And both can fail if there are multiple potential outcomes that do not comprise
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mutual best responses considered as pure strategies, which may happen when the equilibrium

is in mixed strategies.

However, in addition to the considerations already discussed, there are settings in which

EITR and/or EGTR may be satisfied. In particular, if there is perfect information, so

that some individuals observe the decisions of the other individuals before making their

own decisions, then it may be reasonable to assume EITR for some individuals. Treatment

response models without social interaction can be viewed as a game with perfect information

in which “nature” selects the treatments, and then the individuals “respond” to that treatment.

This justifies the implicit assumption of EITR in models without social interactions.

3.4. Immunization and infectious disease with social interaction. Infections disease

involves social interactions, and can be used to illustrate issues relating to the specification of

models of social interactions. This section discusses two related models of infectious disease.

The first is a model of the decision to get immunized, in which the object of interest is

the response function that gives an individual’s decision to immunize as a function of the

immunization decisions by others in the individual’s group. The second model is a model

of health outcomes under a policy intervention, in which the object of interest is the health

production function that relates an individual’s health outcome to the treatments of everyone

in that individual’s group. Although the discussion relates to this specific application, the

general issues raised would equally apply to other empirical settings.

3.4.1. Models of the decision whether to get immunized. Suppose the decision to get immunized

made by individual i in group g, yig, is subject to a response function yig(y−ig), which relates

the immunization decision of individual i in group g to the immunization decisions of the

other individuals in group g. The econometrics problem is to learn about functionals of yig(.)

using a data set (Yg : g = 1, . . . , G) of group immunization decisions. The response function

is written as a function only of the immunization decision of others, but, as with all such
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models, can be made implicitly to depend on exogenous observed and unobserved variables

(i.e., yig(y−ig) ≡ y(y−ig, Xig, εig)) through the indexing by i and g.

Consider the immunization decisions of two people in close contact who take as given

the immunization decisions of the rest of their reference group. Similar ideas apply to

immunization decisions of larger groups, like immunization decisions of students in a classroom

or immunization decisions of residents of a local community. Since the two people are in close

contact it is very likely the immunization status and health outcome of one individual affects

the health outcomes of the other individual.

There is a private cost to getting immunized (e.g., the monetary cost, the time cost, or the

health cost of perceived negative effects of immunization), but a group benefit. Therefore,

the individuals may wish either to anti-coordinate or coordinate their immunization decisions,

as described in the following two specifications. Such considerations would be important

when considering an empirical analysis of immunization decisions, as they would impact the

specification of the econometric model.

First, suppose that if at least one of the pair gets immunized they both “avoid” the

disease and get β utils from health. However, there is a private cost of θ utils to getting the

immunization. If neither gets immunized they both “get” the disease and get 0 utils from

health. Assume that 0 < θ < β, and assume that these payoffs are common knowledge.

This interaction can be modeled by the normal form game specified in game 1a, where

action 0 is not get immunized and action 1 is get immunized. This game has three Nash

equilbria, which are reasonable candidates for predictions of the immunization decisions of the

two individuals. There are two pure strategy equilibria in which one person gets immunized

and the other doesn’t, and there is a mixed strategy equilibrium in which both people play

a strategy to get immunized with probability β−θ
β
. Hence, with these payoffs, there is a

preference for anti-coordination. This basically results in the payoffs of the game of chicken,

as described in Fudenberg and Tirole (1991, p. 18) among many places, where the “weak”
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action corresponds to getting immunized and the “tough” action corresponds to not getting

immunized.

Second, suppose instead that both need to get immunized to avoid the illness. The payoffs

are similar to the case above, but modified to account for the fact that now both individuals

need to get immunized for there to be a health benefit. This is described in game 1b. This is

basically a coordination game where both individuals get the same payoff to coordinating,

and the payoff depends on what they coordinate on, after a payoff normalization. As with

the previous specification, this game has three Nash equilbria. There are two pure strategy

equilibria, one in which both individuals get immunized and one in which neither individual

gets immunized, and there is a mixed strategy equilibrium in which both individuals play a

strategy to get immunized with probability θ
β
.

y2 = 0 y2 = 1
y1 = 0 0, 0 β, β − θ
y1 = 1 β − θ, β β − θ, β − θ

(a) Anti-coordination

y2 = 0 y2 = 1
y1 = 0 0, 0 0,−θ
y1 = 1 −θ, 0 β − θ, β − θ

(b) Coordination

Table 1. Two specifications of games for immunization decisions: (a) prefer-
ence for anti-coordination and (b) preference for coordination

Similar models that suggest that immunization decisions involve strategic interaction, and

in particular randomization of individual immunization decisions, include Bauch, Galvani,

and Earn (2003), Bauch and Earn (2004), Galvani, Reluga, and Chapman (2007), Vardavas,

Breban, and Blower (2007), and Bauch, Bhattacharyya, Ball, and Boni (2010). In the games

described above the randomization is due to the possible use of mixed strategies, but there can

also be randomization that is due to incomplete information, for example when individuals do

not know the others’ preferences over health and other goods. In that case, there is effectively

randomization, from the perspective of each individual, induced by the distribution over

types.

In addition to randomization of individual immunization decisions, it is also plausible in

this sort of setting that there is not Nash equilibrium play. For example, in the case of
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preference for anti-coordination it is plausible that the outcome is that neither individual

gets immunized, even though this is not a pure strategy Nash equilibrium. This is plausible

because it could be that each individual believes the other individual will get immunized,

which is a reasonable belief since getting immunized is the best response if the other individual

does not get immunized, and so on. In other words, neither individual getting immunized is

a rationalizable outcome. Consequently, neither individual getting immunized is a reasonable

candidate for the prediction of the immunization decisions of the two individuals, even though

it is not a pure strategy Nash equilibrium. This outcome could also arise from the realization

of the mixed strategy Nash equilibrium.

Consider the econometrics problem of recovering information about this model of immu-

nization decisions, based on data that consists of the immunization decisions of pairs of

individuals. The assumption of EITR implies that, for example, for a pair of individuals in

the data in which both are observed to get immunized, the response of each individual to the

other individual getting immunized is to get immunized itself.

This rules out the possibility that the data comes from the mixed strategy equilibrium, or

a rationalizable outcome. In either such case, and also for other reasons like the existence of

incomplete information that also results in randomization, it need not be that immunization

decisions Yg in the data satisfy yig = yig(Y−ig). Consequently, in those cases, EITR does not

hold, and so using a model based on EITR can lead to misleading conclusions. Consider

for example a public health organization that observes data on immunization decisions of

married couples, and finds that fraction p of husbands whose wives are immunized also gets

immunized himself, for some p ∈ (0, 1). This is consistent with the mixed strategy Nash

equilibrium behavior both when there is preference for anti-coordination and preference for

coordination. The public health organization might conclude from this, based on an implicit

or explicit assumption of EITR, that it is worthwhile to promote immunization among women,

with the “understanding” from the data that the husbands would be reasonably likely to also

get immunized if their wives get immunized, assuming that p is reasonably large. However,
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the validity of this conclusion depends on whether there is preference for anti-coordination or

preference for coordination. In the first case this policy intervention would have the result of

reducing the rate of immunization among men to 0 (among married couples in which the

wife does get immunized) while in the second case it would have the result of increasing the

rate of immunization among men to 1 (among married couples in which the wife does get

immunized).

Obviously, these two scenarios have very different implications for the public health

organization, but these considerations are essentially ignored when assuming EITR. In the

case in which the immunization rate among men goes to 0, for example, it may be the

case that this intervention is not worth the cost. The same reasoning holds for other policy

interventions. For example, a public health organization might consider whether to promote

vaccination among some subpopulation of a school (e.g., a particular grade level, or the

teachers and staff), using the observed data to help predict the behavioral response of the rest

of the school. The same considerations imply that assuming EITR can lead to misleading

conclusions that the health organization draws from the data about such a policy intervention.

It could be, for example, that the data would suggest that the result of this policy intervention

is that, again, roughly fraction p of the rest of the school would get immunized, if a focal

individual like an instructor is immunized, because that is observed in the data. But as before

that analysis relies on behavioral assumptions that may not apply in all empirical settings.

3.4.2. Models of health outcomes. Now suppose that the object of interest is the “production

function” of health outcomes as a function of the vector of treatments in a group. The

treatments could be provision or subsidization of immunization, supply of bed nets, some sort

of public health awareness campaign, or anything else that a social planner can manipulate

that affects health outcomes. Let the health outcome of individual i in group g, hig, be

given by hig = hig(dg,Ag) where hig(·) is a function, and Ag is an unobservable that

represents actions that individuals take, possibly in response to the treatments dg. For
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example, given the treatments in dg, Ag can capture the decision of individuals in the group

of whether (and how much) to interact with other individuals who may have the disease.

If Ag is a deterministic function of dg then it is without loss of generality to write that

hig = υig(dg) = hig(dg,Ag(dg)). Consequently, EGTR is plausible under this condition,

because then the group health outcome is a unique function of the treatment, even though

there is an intermediate behavior stage that also affects health outcomes. For recent work on

identification in these settings of treatment response where an outcome is a function of the

treatments of others, see Manski (2013) and Lazzati (2015), as discussed in Section 2.3.

There are two important cases where Ag is not a unique function of dg. The first case

is when the behavioral stage of the model, considered as conditional on the “parameters”

dg, can have multiple equilibria. In this case, Ag can take many different values for some

dg. As a consequence, it is not credible to assume EGTR, because for a fixed vector of

treatments, the group can have multiple different potential outcomes. The second case is

when the behavioral stage of the model involves mixed strategies. Then again, Ag can take

many different values for some dg.

The possibility of models of behavior with mixed strategies has already been discussed

above. For example, suppose that dg amounts to some sort of intervention that affects θ, the

private util cost of immunization, in the model of Section 3.4.1. Then Ag is not a function.

For example, dg could be a subsidy to get vaccinated, and Ag could be some action that

depends on dg that affects payoffs, like whether to actually get immunized. In general, the

health outcome differs depending on which actions are actually realized from the mixed

strategies. For example, in both games, if it happens that both individuals get immunized,

then neither individual gets the disease. But, if it happens that neither individual gets

immunized, then both individuals get the disease. Consequently, under this model, there

are multiple potential outcomes for the group given a fixed treatment dg. There are also

multiple potential outcomes because of the existence of multiple equilibria in those games. For

example, in the game with a preference for coordination, if it happens that the equilibrium
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in which both individuals get immunized is selected, then neither individual gets the disease.

But, if it happens that the equilibrium in which neither individual gets immunized is selected,

then both individuals get the disease.

Further, for another example of a social interaction with multiple equilibria, consider

models of disease in which individuals can modify their behavior (denoted above as Ag) as a

function of the prevalence of the disease. For example, in the case of a sexually transmitted

infection (i.e., Kremer (1996)) this can be the number of sexual partners per period. More

generally, the behavior can be the decisions relating to interaction with other individuals who

may have the disease. As before, dg is a vector of treatments like those discussed above, like

subsidization of some sort of medical care. The actions Ag are the decisions of individuals

about interacting with others. Kremer (1996) shows that these models can have multiple

equilibria that have different prevalences of the disease. Consequently, the assumption of

EGTR rules out this class of model of disease and behavior. The intuition for existence of

multiple equilbria in such settings is described in detail in Kremer (1996).

Even though the vector of treatments is exogenous to the model of health outcomes, the

assumption of EGTR rules out models which have the potential for multiple equilibria. The

assumption of EGTR also rules out mixed strategies. All of these considerations apply equally

to observational data and experimental data. There are many advantages of experiments,

for example because experiments can solve endogeneity problems. Experimental data and

econometric modeling of social interaction provide complementary features to an analysis.

The experiment helps to solve issues with endogeneity with respect to the relation between

observable and unobservable characteristics of the individuals, while the econometric modeling

helps resolve the issues discussed in this section, that are unrelated to the endogeneity problem,

but are related to how to link data and models in settings where social interactions are

important.
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4. Policy relevance of models of social interactions

Models of social interactions are often used to make policy relevant claims like that peers

“cause each other” to have certain outcomes, as in claims like that “a student who has high

achieving peers has increased educational achievement itself.” In some settings it is plausible

that a social planner could directly manipulate the outcome of some individuals, for example

by preventing some actions for some individuals as in drug and alcohol policy, or by a

mandatory immunization policy. However, in general, because the outcomes in models of

social interactions are simultaneously determined, it may not be possible for a social planner to

directly manipulate the outcomes of individuals. This suggests that caution is warranted when

interpreting the results of estimating models of social interactions, particularly when making

claims about the effect of the outcomes on other outcomes. It may be more straightforward

to investigate the effect of manipulating the exogenous explanatory variables, accounting for

the effects of the social interaction. For example, in the context of the linear-in-means model,

the effect of the exogenous explanatory variables is given by Equation 4. Similar ideas were

addressed in Kline and Tamer (2013). Beyond the specific context of the linear-in-means

model, these considerations suggest the role of the response functions discussed in Section

2.3, that are the “reduced form” that map the treatments of all individuals to the outcomes

of all individuals. Note that it may not be desirable to simply run a linear regression of

“outcomes” on “exogenous explanatory variables” even if the reduced form is the object of

interest, because the reduced form of a social interactions model is not necessarily a linear

model, as demonstrated for the linear-in-means model in Equation 3. In particular, even

for the linear-in-means model with a linear structural form, the reduced form depends in a

complicated non-linear way on the network G and parameter δ.

Nevertheless, the “interaction effects” can be useful to understand the “partial” effect of

outcomes on other outcomes, even if outcomes cannot actually be directly manipulated. The

response functions can be useful to get a sense of the social interaction mechanism when
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considering a policy intervention that directly affects the outcomes of individuals privately, for

example some treatment (e.g., subsidized immunization), but because of the social interaction

process may indirectly affect the outcomes of everyone in the group.

It is also useful to consider possible “re-equilibrization” effects of policy interventions

or other manipulations of outcomes. In particular, if a particular outcome is somehow

directly manipulated, then the outcomes of other individuals in the group will change in

response, according to the equilibrium of the social interaction. Then, unless the originally

manipulated outcome is still held fixed by the manipulation, the original outcome might

change in equilibrium in response to the changes of the outcomes of the other individuals.

In other words, there can be a difference between a one-time manipulation of an outcome,

in which case that outcome might subsequently change due to re-equilibrization, and a

permanent manipulation of an outcome to a fixed outcome, in which case that outcome is

“removed” from the model of the social interaction and no longer is “re-equilibriated.”

Particularly in the context of social interactions models with an underlying network

structure of interactions within groups, an important consideration is the joint determination

of outcomes and the network. Interventions, whether they be related to manipulating

outcomes directly or the exogenous explanatory variables, can be suspected to also have

effects on the network. If so, then counterfactual predictions of the outcomes after the

intervention may be poor predictions if they assume that the network will be unaffected by

the intervention, although such a counterfactual that “holds fixed” the network can still be

useful to understand the “partial” effect of the intervention on outcomes, even if it is not

predictive of the actual outcomes. This is the direct effect of the intervention. For example, it

could be possible to use a model of network formation to predict the resulting network after

the intervention, and then use that predicted model in the model of social interactions to

predict the resulting outcomes after the intervention. Carrell, Sacerdote, and West (2013) find

evidence that such considerations can be practically relevant, in that when they attempted to

manipulate peer groups, individuals formed a network of connections within each manipulated
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peer group that lead to individuals avoiding interacting with individuals that the manipulated

peer group had been designed for them to interact with.

It is also useful to understand the mediating effect of networks in models of social in-

teractions. Does a particular policy intervention have different effects in different groups

(i.e., cities/villages/neighborhoods) that have different networks of connections? In many

applications, the network will be sufficiently “stable” that a relatively minor intervention

affecting one outcome (out of many outcomes affected by the network) may be reasonably

assumed to have negligible effect on the network. Moreover, it is useful to measure how much

of the change in outcomes is due to changes in the network. This is the indirect effect of

the intervention. It may be possible to parametrize the link between the treatment and the

network and outcomes and use a full model to learn all the causal effects of interest.
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