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1. Basic model and assumptions

(1) uim(0, y(−i)m) = 0 and uim(1, y(−i)m) = xim1 + ũi(xim(−1), θi) +
∑
j 6=i

gwijmyjm + εim.

(2) gwijm = si(gm) (fij(zijm, δij) + νijm) gijm.

(3) gwijm ≡ ∆ij.

Assumption 1.1 (Median independence of the unobservables). The following two
median independence conditions hold:

(1) For each role i, εi|x has zero median for all x in the support. Moreover, it
holds that the cumulative distribution function Fεi|x(·) is strictly increasing in
a neighborhood of zero.

(2) For all roles i and j, (εi + si(g)νij)|(x, z, gij = 1, si(g)) has zero median for
all (x, z, gij = 1, si(g)) in the support. Moreover, it holds that the cumula-
tive distribution function Fεi+si(g)νij |x,z,gij=1,si(g)(·) is strictly increasing in a
neighborhood of zero.

Assumption 1.2 (Continuous unobservables). For each role i, the distribution of
εi|x is continuous for all x in the support. Also, for all roles i and j, the distribution
of (εi + si(g)νij)|(x, z, gij = 1, si(g)) is continuous for all (x, z, gij = 1, si(g)) in the
support.

Assumption 1.3 (Sufficient variation of the explanatory variables). For each role
i, if ti 6= θi, then P (ũi(·, ti) = ũi(·, θi)) < 1. For all roles i and j, if dij 6= δij, then
P (fij(·, dij) = fij(·, δij)) < 1.
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Assumption 1.4 (Large support regressor). For any x·(−1) in the support, x·1|x·(−1)

has everywhere positive density with support on RN . Also, for any (x·(−1), z) in the
support, x·1|(x·(−1), z) has everywhere positive density with support on RN .

Assumption 1.5 (Observed at random connections). It holds that (ε, ν)|(x, z, g, {si(g)}i) ∼
(ε, ν)|(x, z, ĝ, g, {si(g)}i) and, for all roles i and j, (ε, ν)|(x, z, gij = 1, si(g)) ∼
(ε, ν)|(x, z, ĝij = 1, gij = 1, si(g)).

Assumption 1.6 (Existence of observed connections). For all roles i and j, there
is a non-random constant sij > 0 such that for any (x, z) in the support, P (ĝij =
1, si(g) = sij|x, z) > 0.

Assumption 1.7 (Uniformly bounded interaction structure). For any δ < 1, there is
Gδ > 0 such that, for any (x, z, g, {si(g)}i) in the support, P (|gw| � Gδ|x, z, g, {si(g)}i) ≤
1− δ.

Assumption 1.8 (Conditional tail behavior of the unobservables). For all roles i
and j, for any non-random function τi(·) of x of the form that τi(x) ≡ axi1 +
τ̃i(xi(−1)), where a = 1 or a = −1, and any sequence of x that varies only in x·1

such that τi(x) → ∞, it holds that Fεi|x(τi(x)) → 1 and Fεi|x,z,gij=1,si(g)(τi(x)) → 1
and Fεi|x,z,g,{si(g)}i

(τi(x))→ 1; and, for any sequence of x that varies only in x·1 such
that τi(x) → −∞, it holds that Fεi|x(τi(x)) → 0 and Fεi|x,z,gij=1,si(g)(τi(x)) → 0 and
Fεi|x,z,g,{si(g)}i

(τi(x))→ 0.

Assumption 1.9 (Non-flat unobservables). The following two conditions hold:

(1) For each role i, and each (x(−i)(−1), xi) in the support, and t 6= 0, it holds
that lim supx(−i)1

Fεi|x(t) 6= 1
2 and lim infx(−i)1 Fεi|x(t) 6= 1

2 , where the limits are
along any sequence of x(−i)1 such that, for each j 6= i, either xj1 → ∞ or
xj1 → −∞.

(2) For all roles i and j, and each (x(−i)(−1), xi) and z and si(g) in the sup-
port, and t 6= 0, it holds that lim supx(−i)1

Fεi+si(g)νij |x,z,gij=1,si(g)(t) 6= 1
2 and

lim infx(−i)1 Fεi+si(g)νij |x,z,gij=1,si(g)(t) 6= 1
2 , where the limits are along any se-

quence of x(−i)1 such that, for each k 6= i, either xk1 →∞ or xk1 → −∞.

2. Extension: Identification of the distribution of the unobservables

It is also possible to point identify the distribution of the unobservables. This
is useful because the distribution of the unobservables is an ingredient in marginal
effects and other counterfactuals.



ONLINE SUPPLEMENT TO IDENTIFICATION OF COMPLETE INFORMATION GAMES 3

Assumption 2.1 (Observed network). ĝ ≡ g

Assumption 2.2 (Interaction effect sign homogeneity). For all roles i and j, it holds
that sgn (fij(zij, δij)) = sgn (fji(zji, δji)) for any (zij, zji) in the support. Also, using
the notation that ∆ij(zij) ≡ sgn (fij(zij, δij)), the support of ν|(x, z, g) is sufficiently
small so that P (gwij ≥ 0 if ∆ij(zij) ≥ 0 and gwij ≤ 0 if ∆ij(zij) ≤ 0(∀i, j)|x, z, g) = 1
for all (x, z, g) in the support.

Assumption 2.2 requires, first, that the sign of the “observable” part of the inter-
action effect is symmetric within any pair of agents. However, this sign can vary as
a function of z, and can vary across pairs of agents. Also, second, this assumption
requires that the sign of the “overall” interaction effect gwij is the same as the sign of
the “observable” part.

Assumption 2.3 (Space of unobservables). (ε, ν)|(x, z, g) is conditionally indepen-
dent from x·1. The distribution of ε|(x, z, g) is continuous, and the distribution
of (ε, ν)|(x, z, g) varies continuously with (x, z). Also, (ε ⊥ ν)|(x, z, g) and the
non-redundant components of ν|(x, z, g) are mutually independent.1 Finally, unless
∆ij(zij) ≤ 0 for all i and j, and all z in the support, the distribution of ε|(x, z, g) is
uniquely characterized by its bivariate marginals.

The first part of assumption 2.3 (or equivalent) is necessary for identification, as
with single-agent discrete choice. The second part rules out pathologies with discon-
tinuous distributions. The third part is necessary for identification because just a
few linear combinations of the unobservables determine the distribution of the data,
so the entire correlation structure of the unobservables cannot be point identified.2

If ν ≡ 0, as in the standard model in equation 3, this part is satisfied. The last
part is satisfied by many standard distributions, including the normal distribution

1νij and νji are redundant if νij ≡ νji by assumption. The “non-redundant components” includes
just one of these. Essentially, this part of the assumption is used to imply that the marginals of ν
uniquely characterize the joint distribution. This can happen either because the components of ν
are independent, or are equal to each other.

2The following elaborates on this claim. Suppose for simplicity that N = 2, gij ≡ 1, fij(·, δij) =
∆ij and si(g) ≡ 1; drop conditioning on x and z from the notation, suppose that ∆12 = ∆21 ≤ 0,
and maintain assumption 2.2. In order to focus on the distribution of the unobservables, suppose
that the selection mechanism is known to choose (0, 1) in the region of multiple equilibria. (If the
unobservables cannot be identified with these assumptions, they cannot be identified without them.)
The only distributions of the unobservables that are relevant to determining the distribution of the
utility functions are (ε1, ε2), (ε1, ε2 + ν21), (ε1 + ν12, ε2), and (ε1 + ν12, ε2 + ν21) corresponding to the
outcome (0, 0), (1, 0), (0, 1), and (1, 1) respectively. Moreover, since probabilities sum to 1, actually
(ε1, ε2), (ε1 + ν12, ε2), and (ε1 + ν12, ε2 + ν21) uniquely determine the distribution of the data. So,
for example, ν21 only appears in the form of ε2 + ν21, implying that it is not possible to identify the
joint distribution of (ε2, ν21) without additional assumptions.
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and other elliptical distributions. It is also satisfied if the components of ε|(x, z, g)
are mutually independent, as in some of the related work. Any “entry game” with
negative interaction effects satisfies this part of the assumption. And, this part of the
assumption is satisfied if N = 2.

Assumption 2.4 (Continuous utility functions). For all roles i and j, ũi(·, θi) and
fij(·, δij) are continuous.

Assumption 2.5 (Characteristic functions). One of the following conditions holds:

(1) For all roles i and j, the characteristic functions of εi|(x, z, g) and νij|(x, z, g)
are non-zero on dense subsets of the real line.

(2) For all roles i and j, the characteristic functions of νij|(x, z, g) and (λiεi +
λjεj)|(x, z, g) for any numbers (λi, λj) are analytic.

(3) For all roles i and j, νij|(x, z, g) ≡ 0.

This assumption is used to guarantee that a “pseudo-deconvolution” step of the
identification strategy is valid. Many standard distributions satisfy the first condition
because infinitely divisible distributions have characteristic functions without zeros.
The second condition allows many zeros, but requires moment generating functions.

Assumption 2.6 (Large support regressor). For any (x·(−1), z, g) in the support,
x·1|(x·(−1), z, g) has everywhere positive density with support on RN .

The following theorem shows that under these additional assumptions, the distribu-
tion of the unobservables is point identified. These assumptions are more restrictive
than the assumptions used to point identify the parameters θ = (θi)i and δ = (δij)ij,
reflecting the additional complications involved in point identifying the distribution
of the unobservables. Because of the importance of point identifying the distribution
of the unobservables for some uses of the model, for example counterfactuals, it nev-
ertheless seems worthwhile to report the result about point identification under these
stronger assumptions.

Theorem 2.1. Suppose that the model of the utility functions is given in equations
1 and 2, and suppose that there is Nash equilibrium play, in pure strategies. Suppose
that θ and δ are point identified. Under assumptions 1.7, 1.8, 2.1, 2.2, 2.3, 2.4, 2.5,
and 2.6, the distribution of (ε, ν̃)|(x, z, g) is point identified on the support of (x, z, g),
where ν̃ is the sub-vector of ν corresponding to connected agents according to g. If



ONLINE SUPPLEMENT TO IDENTIFICATION OF COMPLETE INFORMATION GAMES 5

there is only level-2 rational play, allowing for mixed strategies, dropping assumption
2.2, then the distributions of εi|(x, z, g), and νij|(x, g) for gij = 1, are point identified
on the support of (x, z, g) for all roles i and j.

Corollary 2.1. Under the same conditions, except replacing Nash equilibrium play
with level-2 rational play, allowing for mixed strategies, dropping assumption 2.2, and
adding the condition that (ε1 ⊥ · · · ⊥ εN)|(x, z, g), the distribution of (ε, ν̃)|(x, z, g) is
point identified on the support of (x, z, g).

Remark 2.1 (Intuition for identification strategy). Pure strategy Nash equilibrium
implies, essentially, that “partial correlation” in the outcomes that is not due to the
explanatory variables is due to correlation in the unobservables. If there is not pure
strategy Nash equilibrium play, then identification of the correlation of the unobserv-
ables is “confounded” by the possibility of mis-coordinated play. Identification of the
marginal distributions is possible under level-2 rationality.

Remark 2.2 (Equilibrium existence). A pure strategy Nash equilibrium exists, as
long as gw is symmetric, because then the game is a potential game with potential
P (y) ≡ ∑i∈N

(
ui(yi) + yi

2
∑
j 6=i g

w
ijyj

)
where ui(0) = 0 and ui(1) = xi1 + ũi(xi(−1), θi)+

εi. Then see Monderer and Shapley (1996). A pure strategy Nash equilibrium can
exist even if gw is asymmetric, for example: if N = 2, or if there is a non-negative
interaction effect (i.e., Topkis (1979)), among other conditions.

Remark 2.3 (Identification of ν). Only ν̃ is identified; it is not possible to identify
νij|(x, z, g) when gij = 0, because such νij does not enter the model.

3. Proofs

Proof of theorem 2.1. Due to the independence conditions in assumption 2.3 it is
enough to point identify the distribution of ε|(x, z, g), and of νij|(x, z, g) when gij = 1.
There are two cases for a given (x, z, g): ∆ij(zij) ≤ 0 for all i and j, and ∆ij(zij) ≥ 0
for some i and j.

The first case is ∆ij(zij) ≤ 0 for all i and j.
First, since the interaction effects are non-positive w.p.1 under assumption 2.2, the

event xi1 + ũi(xi(−1), θi) + εi ≤ 0 for all i is equivalent to the event that the unique
pure strategy Nash equilibrium is (0, . . . , 0).3 Thus, P (y = (0, . . . , 0)|x, z, g) = P (εi ≤

3This ignores the probability zero event that xi1 + ũi(xi(−1), θi) + εi = 0 for any i, by assumption
2.3. Under that condition on the utility function, action 0 is a dominant strategy for all agents,
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−xi1 − ũi(xi(−1), θi)(∀i)|x, z, g). P (y = (0, . . . , 0)|x, z, g) is observed on the support
of (x, z, g), since the distribution of ε|(x, z, g) is continuous in (x, z) by assump-
tion 2.3, the utility functions are continuous by assumption 2.4, and g is discrete.
Since ε|(x, z, g) is conditionally independent from x·1, by assumption 2.3, the entire
distribution of ε|(x, z, g) can be recovered by varying x·1, by assumption 2.6, since
−xi1− ũi(xi(−1), θi) is known given that θ is point identified. That follows because, by
the above, the value of the cumulative distribution function of ε|(x, z, g) is observed
at each value of its argument. Thus, the distribution of ε|(x, z, g) is point identified.

Second, by arguments similar to those used in the proof of the main point identi-
fication result, by taking xk1 → −∞ for all k 6= i, j, P (y = (1, 1, 0, . . . , 0)|x, z, g) →
P (εi + si(g)νijgij ≥ −xi1− ũi(xi(−1), θi)− si(g)fij(zij, δij)gij, εj + sj(g)νjigji ≥ −xj1−
ũj(xj(−1), θj) − sj(g)fji(zji, δji)gji|x, z, g), where the 1s correspond to roles i and j.
Since the distribution of ε|(x, z, g) is continuous, and (ε ⊥ ν)|(x, z, g), by assump-
tion 2.3, the distribution of (εi + si(g)νijgij, εj + sj(g)νjigji)|(x, z, g) is continuous,
so agents are indifferent among their strategies to a pure strategy of the other agent
with zero probability, so the boundary conditions can be ignored. Since (ε, ν)|(x, z, g)
is conditionally independent from x·1, by assumption 2.3, it is possible to recover the
entire distribution of (εi + si(g)νijgij, εj + sj(g)νjigji)|(x, z, g) by varying x·1, by as-
sumption 2.6, by the same arguments as above.4 Thus, that distribution is point
identified. In particular, the distribution of (εi + si(g)νij)|(x, z, g) is point identified
when gij = 1. Since (εi ⊥ νij)|(x, z, g) by assumption 2.3, the characteristic functions
satisfy ϕεi+si(g)νij |x,z,g(t) = ϕεi|x,z,g(t)ϕνij |x,z,g(si(g)t). This implies by assumption 2.5
that the characteristic function of νij|(x, z, g) when gij = 1 is point identified, since
the distribution of εi|(x, z, g) is point identified from the previous paragraph, so the
distribution of νij|(x, z, g) when gij = 1 is point identified.5 Therefore the distribution
of the unobservables is point identified.
since ∆ij(zij) ≤ 0 and using assumption 2.2, so (0, . . . , 0) is the unique Nash equilibrium outcome.
Conversely, if (0, . . . , 0) is the pure strategy Nash equilibrium outcome, by definition that condition
on the utility function must hold.

4Technically, this follows because any other distribution of the unobservables would have P̃ (εi +
si(g)νijgij ≥ ti, εj + sj(g)νjigji ≥ tj |x, z, g) 6= P (εi + si(g)νijgij ≥ ti, εj + sj(g)νjigji ≥ tj |x, z, g)
for an open set of (ti, tj) since the distributions are continuous. Consequently, the limit described
in the first part of this paragraph would converge to a different place for different distributions of
the unobservables, for a positive probability of the observables.

5If ϕεi|x,z,g(t) 6= 0 on a dense subset, then divide by ϕεi|x,z,g(t) for t where it is non-zero to
recover ϕνij |x,z,g(si(g)t) using the fact that continuous functions are characterized by their values
on dense subsets. Otherwise, since characteristic functions are non-zero in some neighborhood of
zero, divide by ϕεi|x,z,g(t) in that neighborhood of zero. If ϕνij |x,z,g(si(g)t) is analytic, the value
of the characteristic function in a neighborhood of zero uniquely characterizes the characteristic
function, so ϕνij |x,z,g(si(g)t) is point identified (i.e, Ushakov (1999, Theorem 1.7.7)).
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The second case is that ∆ij(zij) ≥ 0 for some (but not necessarily all) i and j.
First, consider i and j such that ∆ij(zij) ≥ 0. As before, by taking xk1 → −∞ for all

k 6= i, j, P (y = (1, 0, 0, . . . , 0)|x, z, g)→ P (εi ≥ −xi1− ũi(xi(−1), θi), εj + sj(g)νjigji ≤
−xj1 − ũj(xj(−1), θj) − sj(g)fji(zji, δji)gji|x, z, g) and P (y = (0, 1, 0, . . . , 0)|x, z, g) →
P (εi+si(g)νijgij ≤ −xi1−ũi(xi(−1), θi)−si(g)fij(zij, δij)gij, εj ≥ −xj1−ũj(xj(−1), θj)|x, z, g),
and so (εi, εj + sj(g)νjigji)|(x, z, g) and (εi + si(g)νijgij, εj)|(x, z, g) are point identi-
fied. So in particular εi|(x, z, g) and εj|(x, z, g) are point identified. Then, since (εi ⊥
νij)|(x, z, g) by assumption 2.3, the characteristic functions satisfy ϕεi+si(g)νijgij |x,z,g(t) =
ϕεi|x,z,g(t)ϕνij |x,z,g(si(g)t) when gij = 1. As before, this implies by assumption 2.5
that the characteristic function of νij|(x, z, g) when gij = 1 is point identified, so
the distribution of νij|(x, z, g) when gij = 1 is point identified. Now, since (εi +
si(g)νijgij, εj)|(x, z, g) is point identified, in particular any weighted sum (λi(εi +
si(g)νijgij) +λjεj)|(x, z, g) is point identified. Again by the independence conditions,
the characteristic functions satisfy ϕλisi(g)νijgij+(λiεi+λjεj)|x,z,g(t) = ϕλisi(g)νijgij |x,z,g(t)ϕλiεi+λjεj |x,z,g(t).
By the same arguments as before, the characteristic function of (λiεi + λjεj)|(x, z, g)
is point identified, so the distribution of (λiεi + λjεj)|(x, z, g) is point identified.
Since distributions of random vectors are uniquely determined by the distributions
of all linear combinations of the components, this implies that the distribution of
(εi, εj)|(x, z, g) is point identified.

Second, consider i and j such that ∆ij(zij) ≤ 0. By taking xk1 → −∞ for all
k 6= i, j, P (y = (1, 1, 0, . . . , 0)|x, z, g) → P (εi + si(g)νijgij ≥ −xi1 − ũi(xi(−1), θi) −
si(g)fij(zij, δij)gij, εj + sj(g)νjigji ≥ −xj1 − ũj(xj(−1), θj)− sj(g)fji(zji, δji)gji|x, z, g)
and P (y = (0, 0, 0, . . . , 0)|x, z, g)→ P (εi ≤ −xi1−ũi(xi(−1), θi), εj ≤ −xj1−ũj(xj(−1), θj)|
x, z, g), so (εi + si(g)νijgij, εj + sj(g)νjigji)|(x, z, g) and (εi, εj)|(x, z, g) are point iden-
tified. And so, by the last condition of assumption 2.3, the distribution of ε|(x, z, g) is
point identified. Then, since (εi ⊥ νij)|(x, z, g) by assumption 2.3, the characteristic
functions satisfy ϕεi+si(g)νijgij |x,z,g(t) = ϕεi|x,z,g(t)ϕνij |x,z,g(si(g)t) when gij = 1. As
before, this implies by assumption 2.5 that the characteristic function of νij|(x, z, g)
when gij = 1 is point identified, so the distribution of νij|(x, z, g) when gij = 1 is
point identified. So, the distribution of the unobservables is point identified.

By similar arguments, except taking limits for k 6= i, not k 6= i, j, the claim about
point identification under level-2 rationality is established. �
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