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Abstract. This paper develops identification results for the distribution of valuations in a class of

allocation-transfer games. These games determine an allocation of units of a valuable object and

arrangement of monetary transfers on the basis of the actions taken by the players. The results allow

dependent valuations, discrete parts of the action space, non-differentiability, and unknown (to the

econometrician, prior to observing the data) details of how the allocations and transfers are determined.

The identification strategy is based on the assumption of a single monotone equilibrium used in the

data, in which players use strategies that are weakly increasing functions of their valuations for the

object being allocated. As extensions, the identification strategy accommodates certain relaxations of

the equilibrium assumption, while maintaining the assumption of the use of monotone strategies.

JEL codes: C57, D44, D82. Keywords: identification, incomplete information, monotone equilib-

rium.

1. Introduction

This paper develops identification results for a class of allocation-transfer games that involve

allocation of units of a valuable object and arrangement of monetary transfers on the basis of the

actions taken by the players. Each of the players has a privately-known valuation for a unit of

the object, and uses a strategy that relates its valuation to the action it takes in the game. The

valuations can be dependent, including but not limited to “affiliated values.” The identification result

concerns recovering the distribution of these valuations from the data. The data corresponds to

multiple instances (“plays”) of the game. Partial identification results are stated in terms of “bounds”
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on the distribution of valuations in the sense of the usual multivariate stochastic order. Examples

of allocation-transfer games include contests, auctions, public good provision, and various strategic

market models.

The identification strategy involves using the utility maximization problem to recover information

about the unobserved valuation corresponding to an observed action. More specifically, the main

identification strategy involves using an equilibrium assumption that combines the assumption of

utility maximization and correct beliefs. As discussed in Remark 2, this standard assumption of

equilibrium can be relaxed in various ways. Similar to many other identification results in settings

involving incomplete information, the identification strategy specifically relies on the assumption of a

single equilibrium used in the data; see Remark 1 for further discussion. Hence, the identification

strategy relates to an extensive literature in econometrics that uses utility maximization as a source

of identification. This approach is especially common in industrial organization, including (but not

limited to) in models of firm behavior and monopoly/oligopoly (e.g., Rosse (1970), Bresnahan (1982),

Lau (1982), Berry et al. (1995)) and models of auctions (e.g., Paarsch (1992), Donald and Paarsch

(1993, 1996), Laffont et al. (1995), Guerre et al. (2000), Athey and Haile (2002), and Aradillas-López

et al. (2013)). These literatures have been reviewed in Berry and Tamer (2006), Paarsch and Hong

(2006), Athey and Haile (2007), Berry and Reiss (2007), Reiss and Wolak (2007), Kline et al. (2021),

and Kline and Tamer (2023) among other places.

In addition to assuming equilibrium, the identification results assume monotone equilibrium.

Each player uses a strategy that expresses its action as a function of its valuation. In a monotone

equilibrium, the strategies are weakly increasing functions. In a monotone equilibrium, if the valuation

of a player increases then that player puts forth more effort in contest models, bids more in auction

models, offers/demands more in market models, or contributes more in public good provision models.

The monotone equilibrium assumption can be motivated either as an intuitive assumption, or as a

conclusion from the economic theory literature that has many results establishing sufficient conditions

for existence of monotone equilibrium in games; see Section 3.2.

It is important that the assumption concerns weakly increasing strategies rather than strictly

increasing strategies, in particular because the assumption of strictly increasing is too strong in games

involving discrete action spaces. It is also too strong in other games where the strategies involve “flat



IDENTIFICATION IN MONOTONE EQUILIBRIUM 3

spots.” One key difference is that strictly increasing strategies are invertible but weakly increasing

strategies are not.

The identification result in this paper has multiple features. First, and most obviously, the

identification result applies to a class of allocation-transfer games that involve allocation of units of

a valuable object and arrangement of monetary transfers on the basis of the actions taken by the

players. This class includes models of contests, auctions, procurement auctions and related models

of oligopoly competition, partnership dissolution, public good provision, and strategic (non-“price

taking”) markets. The possible interpretations of the actions include effort in contest models, bids in

auction models, bids/asks in market models, or contributions in public good provision models. In some

games, as in auctions of a single unit, at most one player can be allocated a unit of the object. In other

games, as in auctions of multiple units or public good provision, multiple players can be allocated a

unit of the object. In some games, as in contests, the allocation can be non-deterministic. Therefore,

the identification result can be viewed as exploring the identification power of the assumption of the

use of monotone strategies across this entire class of allocation-transfer games.

Second, the identification strategy can handle the case of dependent valuations. Third, the

identification strategy allows for discrete parts of the action space and non-differentiability. The

action space can be discrete, continuous, or combinations of discrete and continuous. Allowing

for dependent valuations and discrete actions combine to particularly complicate the identification

problem. With discrete actions, generally a range of valuations use the same action (and this can

happen also even without discrete actions), so those valuations cannot be distinguished based on

observed behavior. This illustrates the importance of assuming the use of weakly increasing strategies

rather than strictly increasing strategies. This already complicates the identification problem, and

should be expected to result in partial identification. Further, with dependent valuations, the utility

maximization problem depends on the beliefs held by the player, which depend on the valuation of

the player. The beliefs of players with different valuations are generally distinct even if they use the

same action, so the identification strategy must account for the fact that players that use the same

action do not necessarily have the same beliefs.

Although the literature on incomplete information games has focused on independent unobservables,

there are existing results for cases of dependent unobservables in specific models. Li et al. (2000), Li

et al. (2002), and Campo et al. (2003) study the case of first-price sealed-bid auctions; Aradillas-López
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et al. (2013) study the case of ascending auctions. Aradillas-Lopez (2010), Wan and Xu (2014), Xu

(2014), and Liu et al. (2017) study the case of binary (entry) games.1 Some of those papers also use

the assumption of a monotone Bayesian Nash equilibrium in their settings, in different ways from

the use in this paper. Li et al. (2000), Li et al. (2002), and Campo et al. (2003) have a continuous

action space, and use the assumption of a strictly increasing strategy together with differentiability

conditions. Wan and Xu (2014), Xu (2014), and Liu et al. (2017) have a binary action space, and use

the assumption in order to focus the identification strategy on a setup involving a binary variable

that has a certain threshold-crossing form. The identification strategy in this paper concerns the

assumption of a weakly increasing strategy in a general action space, which is not necessarily as rich

as a continuous action space, and not necessarily as coarse as a binary action space. Of course, the

games considered by the different identification strategies also differ.

Even with the goal of identification of valuations, it is important for the econometrician to recover

some information about player’s beliefs when using utility maximization as a source of identification,

since beliefs are part of the mapping between valuations and observed behavior that results from

utility maximization. The monotone equilibrium assumption allows a key step in the identification

strategy whereby, essentially, the beliefs of a player who takes a given action can be shown to be

suitably “bounded” between the beliefs of players who take larger and smaller actions.

Although continuity of the action space and differentiability is a common (simplifying) assumption,

discrete actions are common in empirical practice. For example, when the action is a monetary

amount (e.g., a “bid” in an auction or “contribution” in public good provision), almost any realistic

implementation in practice will place restrictions on the allowed bids. For instance, the implementation

might require bids that are an integer multiple of some fixed amount (e.g., the allowed bids might

be 5 dollars, 10 dollars, 15 dollars, etc.).2 Discrete actions can also arise for other reasons. For
1Besides the study of a different game, which has a different payoff structure and interaction structure, those papers
involve the use of observed payoff shifters as a source of identification, as standard for the entry game literature. This
is a feature which is not present here. Correspondingly, those papers tend to have a focus on identification of the
parameters characterizing the dependence of utility on payoff shifters, which is not the same object of interest as here
(which is the distribution of the unobservables).
2“Discrete” can be used with different definitions, which are worth distinguishing. Hortaçsu and McAdams (2010)
studies an identification problem (and empirical application) in discriminatory price divisible goods auctions with
independent private values. Kastl (2011) studies an identification problem (and empirical application) in uniform price
divisible good auctions with (mainly) independent private values. In those models, bidders submit a bid function
that specifies a quantity demanded for each possible price. Hence, neither model is covered by the allocation-transfer
game framework studied in this paper, because those models deal with an action space that is a bid function rather
than just a scalar bid. More importantly, the notion of “discrete” action is also different. In particular, Kastl (2011)
uses “discrete” (per Kastl (2011, Assumption 3)) as a statement about the step function nature of the bid functions,
where each player submits a bid function that is a step function, and therefore characterizable by a discrete vector
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instance, some public good provision models have a binary action space: contribute or not contribute,

as in Example 5. Lack of differentiability can arise even without discrete actions; see for instance

Example 6. Allowing discrete actions also accommodates fundamentally “non-numerical” actions, for

example a binary “participation” decision when “participation” in the game is voluntary, as in some

auction models in Example 2.

As a consequence of the above, the main partial identification strategy does not involve derivatives.

This is a difference from many of the identification results in the broader literature that are based on

the first order condition approach to utility maximization. The limiting point identification result in

Appendix A does involve derivatives.

Fourth, the identification strategy does not depend on the econometrician having ex ante (prior to

observing the data) knowledge of the details of how the allocations and transfers are determined on

the basis of the actions of the players, because it is possible to use the data to identify these objects.

For example, the econometrician does not need to ex ante know the “contest success function” in

models of contests, which relate the effort put forth by the players to the probabilities that each of

them win the contest, as in Example 1. For another example, the econometrician does not need to ex

ante know the endogenous quantity function in auctions where the quantity of the object allocated

depends on the actions of the players, as in a “supply curve,” as in Example 2. Such features of the

game can be identified from the data, rather than assumed ex ante known.

Despite the possibility of discrete actions, the models considered in this paper are distinct from

the models considered in the literature on the “econometrics of (entry) games” (e.g., Tamer (2003),

Aradillas-López and Tamer (2008), Ciliberto and Tamer (2009), Aradillas-Lopez (2010), Bajari et al.

(2010a), Bajari et al. (2010b), de Paula and Tang (2012), Kline and Tamer (2012, 2016), de Paula

(2013), Kline (2015, 2016), Aradillas-López (2020), Ciliberto et al. (2021)). Simply put, a setting

involving allocations and transfers is different from a setting of market entry, and so the models and

corresponding identification strategies are also different. Additionally, observed payoff shifters are

not used in the identification strategy in this paper, whereas observed payoff shifters are central in
of prices and quantities that characterize each “step” of the bid function. Hortaçsu and McAdams (2010) similarly
emphasize step bid functions. However, the actual price and quantities at each step of the bid function is unrestricted.
By contrast, as applied to auctions, this paper uses discrete as a statement on the restriction of the allowed bid levels.
So, the players can only bid, for example, integer multiples of some minimal bid level. An earlier version of Hortaçsu
(2002) looked at a model with a discrete grid of possible prices, and hence with a “discrete” action space more similar
to the discreteness in this paper. Of course, the overall identification problem (and hence identification strategy) is
still different from the identification problem addressed in this paper, particularly given the differences in the models
being identified. The identification strategy in this paper does not restrict to auctions or independent values.
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the entry game literature. Nevertheless, the results do apply to some models of strategic (non-“price

taking”) market behavior, which can describe behavior after entry into a market, as in Example 6.

The results focus on using the assumption of Bayesian Nash equilibrium. Remark 2 discusses the

fact that the results can accommodate certain relaxations of the equilibrium assumption.

The remainder of the paper is organized as follows. Section 2 sets up the allocation-transfer game

framework studied in this paper. Section 3 provides the identification strategy. Section 4 provides a

numerical illustration. Finally, Section 5 concludes. Appendix A provides sufficient conditions for

point identification, relating to a discussion in Section 3.8 about the “limit” when the action space

becomes an interval. Appendix B provides examples of the allocation-transfer games framework

studied in this paper. Appendix C collects the proofs.

2. Allocation-transfer game framework

There are N ≥ 2 players in the game. Players are indexed by i = 1, 2, . . . , N . In principle, the

results could apply to some “single-player games” with N = 1, if the assumptions hold in such a game,

but the focus is on multiple-player games. As illustrated via specific examples in Appendix B, many

economic environments can be modeled using this allocation-transfer game framework. This includes

contests, auctions, procurement auctions and related models of oligopoly competition, partnership

dissolution, public good provision, and strategic (non-“price taking”) market behavior.

The set of all player indices is I = {1, 2, . . . , N}. The identification analysis allows for the

possibility of assuming that only specific players satisfy the assumptions of “maximizing utility given

correct beliefs;” these players will be the index set J = {1, 2, . . . , N1} where N1 ≤ N . In a standard

application that assumes Bayesian Nash equilibrium, N1 = N . It is without loss of generality that J

is the first N1 player indices, by re-labeling player indices if necessary.

2.1. Utility functions. Player i has valuation θi for a unit of the object. The utility of player i

with valuation θi, and who receives allocation xi of the object and transfers away (“pays”) ti units of

money is

U(θi, xi, ti) ≡ θixi − ti.

The sign of ti is unrestricted, so player i can be “paid” if ti is negative. The allocation and transfers

are determined by the game, described shortly in Section 2.3. For example, the monetary transfer
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could be the payment in an auction model, the “price” in a market model, or the contribution in a

public good provision model. This utility function is standard in the economic theory literature.

Assumption 1 (Dependent valuations). It is common knowledge among the players that θ ≡

(θ1, θ2, . . . , θN) is drawn from F (θ), and θi is the private information of player i.

This main assumption on the distribution of valuations is standard. The econometrician need

not know the support of θ. It is allowed that θ is continuous, discrete, or some combination. The

identification results simplify under the further assumption of independent valuations:

Assumption 1* (Independent valuations). In addition to Assumption 1, player valuations are

independent, in the sense that the components of θ = (θ1, θ2, . . . , θN) are independent random

variables, so F (θ) = F1(θ1)F2(θ2) · · · FN(θN).

Independent valuations is treated as a special case. It turns out that imposing Assumption 1*

has relatively little impact on the identified bounds; rather, it simplifies the functional form of the

identified bounds, and eliminates the need to make certain assumptions to justify the bounds.

It is not assumed that different players draw their valuations from the same marginal distribution,

as Fi(·) need not equal Fj(·), which is useful for example to model “weak” and “strong” bidders in

auctions or asymmetries between buyers and sellers in models of market behavior.

2.2. Actions. After realizing θi, player i takes an action ai from the action space Ai. The interpre-

tation of actions depends on the game, and includes efforts in contest models, bids in auction models,

announcements (bids/asks) in market models, and contributions in public good provision models.

For “monotonicity” of a strategy to be a well-defined concept, it is necessary that Ai is ordered.

This is accomplished by assuming that Ai can be encoded to be a subset of real numbers.

Assumption 2 (Action space is ordered). For each i ∈ I, the econometrician knows the action space

for player i is Ai ⊆ R.

As a subset of R, Ai inherits the ordering of the real numbers, and Ai can be continuous, discrete,

or some combination of continuous and discrete.

There is not necessarily a “numerical interpretation” of the actions in Ai, similar to how the

numerical encodings in categorical choice models may or may not have a substantive “numerical inter-

pretation.” For example, in games with voluntary participation including auctions with participation
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costs, one of the actions is the action “DNP” for “do not participate.” The numerical encoding of

“special” actions as numbers in Ai respects the ordering of the actions. For example, in auctions

with voluntary participation, generically players with low valuations choose to not participate, so it

makes sense to define DNP to be the lowest possible action, in order for the equilibrium strategy to

be monotone. It could be that DNP is encoded as −1 or −2, for example. The specific numerical

encoding is irrelevant.

2.3. Allocations and transfers. The vector of all players’ actions is a = (a1, a2, . . . , aN), the

vector of all players’ allocations is x = (x1, x2, . . . , xN), and the vector of all players’ transfers is

t = (t1, t2, . . . , tN).

The game determines the allocations and transfers based on the actions taken by the players. Even

for a given profile of actions, non-deterministic allocations and transfers are allowed, for example to

allow “noise” in the process of determining a winner in a contest, as in Example 1. On the basis of all

players’ actions a, the realized allocation and transfer is a realization3 from the joint distribution of

(x̃(a), t̃(a)) = (x̃1(a), x̃2(a), . . . , x̃N(a), t̃1(a), t̃2(a), . . . , t̃N(a)),

where x̃i(a) (resp., t̃i(a)) is a random variable that characterizes the distribution of allocations (resp.,

transfers) for player i given that the players take actions a. These distributions characterizing the

allocations and transfers are part of the specification of the game rules.

If (x̃1(a), x̃2(a), . . . , x̃N(a), t̃1(a), t̃2(a), . . . , t̃N(a)) is a degenerate random variable, then the allo-

cation and transfer is deterministic when the players take actions a. As a function of all players’

actions, the expected allocation to player i is xi(a) = E(x̃i(a)) and the expected transfer from player i

is ti(a) = E(t̃i(a)). Under the assumptions of the identification analysis, only expected allocation and

expected transfer matters. However, that is a (very modest) result, and involves the considerations of

Footnote 3, so the setup begins with the specification of the distribution of allocations and transfers.
3 By construction, these realizations are draws from the joint distribution and therefore by construction are independent
from all other model quantities (e.g., the valuations of the players). This condition formalizes the notion that the
allocation and transfer “don’t depend on” anything except the actions of the players, and is (often implicitly) a
standard condition in the related economic theory literature. Of course, the realized allocation and transfer will
indirectly depend on the players’ valuations, since the players’ valuations determine the players’ actions and the players’
actions determine the realized allocation and transfer. For example, in the case of a tie for high bid in an auction, the
auctioneer could flip a coin to determine who wins, but the outcome of the coin flip cannot somehow be “correlated”
with the valuations of the players.
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As is standard in the literature, the players know the distributions of (x̃(·), t̃(·)). In other words,

the players know the “rules” of the game.

Conversely, the identification results apply regardless of whether or not the econometrician ex ante

knows (before observing the data) the distributions of (x̃(·), t̃(·)), and/or the expected allocations and

transfers (x(·), t(·)). In particular, any “randomness” that underlies non-deterministic allocations and

transfers need not be explicitly modeled or ex ante known by the econometrician. If the econometrician

does not ex ante know these objects, then it is possible to use the data to identify these objects.

The following two examples are selected from Appendix B. Both are further illustrated via a

numerical illustration of the identification results in Section 4.

Example 1 (Contests). In contests, the actions are “effort” toward winning a valuable object. xi(a)

is the “contest success function” that gives the probability that player i wins given the efforts of

all players. Common examples are provided in Example 1 in Appendix B. It is plausible that the

econometrician does not have ex ante knowledge of the contest success function. And, ti(a) is the

transfer from player i. Generally in contest models, at least the winning player transfers its “effort”

and potentially other losing players transfer at least some fraction of their “effort.”

Example 2 (Auctions). The transfer rule in an auction varies substantially across auction formats.

For example, in a standard nth-price auction, ti(a) is specified so that a winner of the auction pays

the n-th highest bid. For the allocation rule, a common property is that the bidder that places the

highest bid wins the auction and is allocated the object, subject to complications like reserve prices or

tie-breaking rules. The auction might involve multiple units, in which case the corresponding number

of highest bidders are all allocated a unit of the object, possibly with corresponding adjustments to

the transfer rule.

2.4. Data and identification problem. The identification problem concerns recovering the distri-

bution of valuations from observing many instances (“plays”) of the game. For context, the related

literature on identification in auctions has typically considered this identification problem in the case

of auctions specifically. Variables relating to the actions, allocations, and transfers in upper-case

letters represent quantities in the data, whereas quantities in lower-case letters represent variables in

the underlying game. For example, Ai is the realized action in the data from player i, whereas ai is

the action variable in the underlying game from player i. Therefore, from each play of the game,
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the realized actions are A = (A1, A2, . . . , AN), the realized allocations are X = (X1, X2, . . . , XN),

and the realized transfers are T = (T1, T2, . . . , TN). Unless otherwise stated, the econometrician

observes population data on the actions, allocations, and transfers. Hence, unless otherwise stated,

the population data is P (A, X, T ). In each instance of the game, by definition (X, T ) is a draw from

(x̃(A), t̃(A)) = (x̃1(A), x̃2(A), . . . , x̃N(A), t̃1(A), t̃2(A), . . . , t̃N(A)).

In some cases, the identification strategy can be based on less than full data on P (A, X, T ).

Specifically, if the econometrician ex ante knows (x̃(a), t̃(a)), or at least (x(a), t(a)), then the

identification strategy can be based on only P (A). If the game involves a “two-part transfer,” as in

an auction with a participation cost, then the identification strategy can in certain cases be based on

data from only one part of the transfer. See the discussion in Section 3.4.

3. Identification analysis

3.1. Baseline assumptions. The following baseline assumptions are used. These assumptions

are standard from the economic theory literature and commonly used in econometrics, and so the

discussion of them is relatively brief. The next section discusses the monotone equilibrium assumption

that is the focus of this paper.

The players are assumed to be risk neutral, and therefore the expected allocations and transfers

xi(a) and ti(a) determine ex post expected utility of player i as a function of its valuation and all

players’ actions:

U i(θi, a) = θixi(a) − ti(a).

In this paper, ex post refers to after the realization of the actions of all players, which still can involve

the expectation with respect to any randomness of the allocation rule and transfer rule. Because of

risk neutrality and expected utility, the utility that is actually realized (based on actually realized

allocation and transfer) plays no role distinct from ex post expected utility. Ex interim refers to

before the realization of the actions of all players, but after an individual player realizes its own

valuation, which involves taking the expectation with respect to the player’s beliefs about the other

players’ actions and the randomness of the allocation rule and transfer rule.

Because player i does not know the actions of the other players when it chooses its action, it must

form beliefs about the actions of the other players. Player i’s beliefs are a distribution Πi(a−i|θi),
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defined over the actions of the other players, a−i = (a1, . . . , ai−1, ai+1, . . . , aN), that conditions on

player i’s realized valuation θi.

Independent valuations. Under Assumption 1* (Independent valuations), player i’s beliefs are

Πi(a−i), independent of player i’s realized valuation. ⋆

Therefore, ex interim expected utility of player i as a function of its valuation and its action is

(1) Vi(θi, ai) = θiEΠi
(xi(ai, a−i)|θi) − EΠi

(ti(ai, a−i)|θi).

With dependent valuations, θi affects the expected allocation and expected transfer experienced by

player i, even for a fixed action ai, since player i’s expected allocation and expected transfer depend on

player i’s beliefs about the other players’ actions, and therefore on θi. This substantially complicates

the identification problem under dependent valuations, compared to independent valuations.

It is assumed that player i is rational, in the sense of using an optimal action given its beliefs.

Assumption 3 (Optimal strategy is used). For each i ∈ J , for each possible valuation θi, player i

uses a strategy ai(θi) when it has valuation θi, with

(2) ai(θi) ∈ ∆(arg max
ai∈Ai

Vi(θi, ai)),

so each action taken according to the strategy ai(θi) maximizes ex interim expected utility.

In this assumption and other places, “possible valuation” means a valuation that is possible

according to the (unknown) distribution of valuations. Assumption 3 does not state that player i

has correct beliefs. Instead, the subsequent Assumption 4 states that player i has correct beliefs.

Also, Assumption 3 allows the use of a mixed strategy, but the identification strategy is based on

the assumption of monotone equilibrium in monotone pure strategies, as formalized and discussed

subsequently in Assumption 5. Breaking up the assumptions makes it easier to discuss the different

roles of the assumptions of using an optimal strategy, correct beliefs, and monotone equilibrium.

Assumption 3 assumes that players 1 through N1 use an optimal strategy, from the index set

J . The econometrician can specify N1. Of course, setting N1 = N says that all players use an

optimal strategy. If N1 < N , then some players may not use an optimal strategy. The identification

strategy accommodates the possibility that only some players use an optimal strategy; if so, then the

identification result restricts to the distribution of valuations of those players. See also Remark 2.
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Let P (A, X, T, θ) be the “infeasible” data, regardless of whether those variables are observed

by the econometrician. Let P (A−i|θi) be the distribution of A−i = (A1, . . . , Ai−1, Ai+1, . . . , AN)

conditional on the valuation θi of player i. Of course, θi is not observed by the econometrician, so

the econometrician cannot condition on θi. In a Bayesian Nash equilibrium, each player’s beliefs are

correct and correspond to the actual distribution of actions of the other players.

Assumption 4 (Correct beliefs). For each i ∈ J , player i has correct beliefs, in the sense that, for

each possible valuation θi, Πi(a−i ∈ B|θi) = P (A−i ∈ B|θi) for all Borel sets B.

Independent valuations. Under Assumption 1* (Independent valuations), the assumption of

correct beliefs is Πi(a−i ∈ B) = P (A−i ∈ B), since then beliefs do not depend on θi. ⋆

As in other incomplete information game identification results, this assumption of correct beliefs

implicitly assumes the realized distribution of actions (i.e., the data) comes from a single equilibrium.

If multiple equilibria were used in the data, the realized distribution of actions in the data would

be a mixture over the beliefs held by the player across equilibria. One trivial sufficient condition

for a single equilibrium being used in the data is that a single equilibrium exists in the game. The

economic theory literature has many results on equilibrium uniqueness; see Appendix B. In particular,

it can be that there is a unique equilibrium that involves using monotone strategies, even if there are

other equilibria that do not involve monotone strategies.

Remark 1 (Testing or relaxing the assumption of a single equilibrium). It is possible to test the

condition that a single equilibrium is used in the data. de Paula and Tang (2012) establish a test for

the use of multiple equilibria in the data in binary incomplete information games. As summarized also

in de Paula (2013), the main idea is that correlation in observed actions can arise only from the use of

multiple equilibria, under the key assumption of independence of unobservables. The situation here is

analogous. The distribution of observed actions from a given equilibrium, (a1(θ1), a2(θ2), . . . , aN (θN )),

has independent components in the case of independent valuations. Thus, any dependence among

observed actions can be taken as evidence for multiple equilibria used in the data. As with the

broader literature, it seems unclear if similar results hold in the case of dependent valuations (or

more generally dependent unobservables). Related results in Aradillas-López and Gandhi (2016),

Kline (2016), and Tomiyama and Otsu (2022) all also require independent unobservables.
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The same considerations suggest that allowing for multiple equilibria in the data and dependence

in the valuations would require some other new step in the identification strategy. While most of the

literature focuses on the case of a single equilibrium used in the data, Xiao (2018), Aguirregabiria

and Mira (2019), and Fan et al. (2024) focus on the issue of multiple equilibria in some incomplete

information games, while ruling out dependence in the private information unobservables as a main

assumption; notably, Xiao (2018) includes a discussion of the difficulty in simultaneously allowing

for multiple equilibria in the data and dependence in the unobservables and Aguirregabiria and

Mira (2019, page 1694) observes that “two types of restrictions are crucial for our identification

results: independence between private players’ private information [...]”. In fact, as standard in that

part of the incomplete information game literature, those results require a known distribution of

unobservables (see Xiao (2018, page 332) and Aguirregabiria and Mira (2019, Assumption 2) and

Fan et al. (2024, Assumption 2.1 or 5.1)), which would obviously not be suitable for the goal of this

paper of identifying the distribution of valuations. Sweeting (2009) uses the existence of multiple

equilibria as a source of identification, while also assuming independence of the Type I extreme value

unobservables on page 718. Grieco (2014) considers a game with “flexible information structures”

allowing for multiple equilibria, while assuming independence of private information drawn from a

normal distribution on page 307. Thus, similar to that literature, this paper does not contribute to

the potentially interesting question of identification of incomplete information games with multiple

equilibria and dependent unobservables.

Similar to Assumption 3, Assumption 4 accommodates the possibility that only some players have

correct beliefs. Assumptions 3 and 4 with N1 = N entails a Bayesian Nash equilibrium.

Under correct beliefs held by player i, Vi(θi, ai) = θiEP (xi(ai, A−i)|θi) − EP (ti(ai, A−i)|θi).

3.2. Monotone equilibrium. The main assumption of the identification strategy is monotone

equilibrium.

Assumption 5 (Weakly increasing strategy is used). It holds that:

(a) For each i ∈ J , player i uses a pure strategy.

(b) For each i ∈ J , player i’s pure strategy ai(·) is a weakly increasing4 function.
4It is straightforward to accommodate a weakly decreasing strategy, because a weakly decreasing strategy can be
translated into a weakly increasing strategy by flipping the signs on the allocation rule and valuations, because if the
strategy is weakly decreasing in the valuation θi, then the strategy is weakly increasing in the “negative valuation”
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The use of pure strategies implies that ai(θi) is a particular action rather than a non-degenerate

distribution. Equilibrium existence in pure strategies is a general result for games with incomplete

information. The economic theory (and existence) of such equilibria in pure strategies has been

studied, for example, in Milgrom and Weber (1982, 1985), Dasgupta and Maskin (1986), Plum (1992),

Reny (1999), Lizzeri and Persico (2000), Maskin and Riley (2003), and Jackson and Swinkels (2005)

in addition to citations elsewhere in this paper, particularly Appendix B.

The assumption of monotone equilibrium is intuitive. For example, in applications to contests in

Example 1, a monotone strategy is the condition that players put forth effort as a weakly increasing

function of their valuation for the object awarded by the contest. Or for another example, in

applications to auctions in Example 2, a monotone strategy is the condition that players place bids

that are weakly increasing functions of their valuation for the object being auctioned. Appendix B

provides a variety of other examples of games for which Assumption 5 is intuitive.

Results establishing general conditions for existence of equilibrium in monotone strategies include

Maskin and Riley (2000), Athey (2001), McAdams (2003, 2006), and Reny (2011). The setup of

the game in this paper can be viewed as a particular specification of the utility function relative

to that literature. As a focal result in the literature, the key assumption of Athey (2001, Theorem

1) is a “single crossing condition” for incomplete information games which requires that the utility

functions satisfy a “single crossing property of incremental returns” whenever all (other) players use

a monotone strategy. This can be interpreted as requiring that a (marginal) increase in the action

increases utility more when the valuation is (marginally) higher. Under differentiability, this can be

interpreted as requiring a positive second cross-derivative of the ex interim expected utility function

with respect to the action and the valuation. Athey (2001, Section 4.2) explores the single crossing

condition in a class of games very similar to the class of allocation-transfer games studied here.

The economic theory literature has also established existence of equilibrium in monotone strategies

in specific games, as cited elsewhere in this paper, particularly Appendix B. With reference to specific

games, the results can be expressed even more explicitly, with perhaps more concretely intuitive

interpretations. A key assumption in many results establishing Assumption 5 is affiliated valuations,

which is a particular form of positive dependence among the valuations across players. Particularly in

the context of affiliation in auctions, see Milgrom (2004, Section 5.4.1) for details. The identification

θ̂i = −θi with “negative allocation” x̂i(a) = −x̃i(a). Note that θ̂ix̂i(a) = θix̃i(a) so utility is unaffected by flipping the
signs in this way.
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strategy only requires Assumption 5. Equilibria in monotone strategies can exist even without

affiliated valuations; see for example Monteiro and Moreira (2006).

This paper uses monotonicity in a different way from other common uses of monotonicity in

econometrics. In other areas of econometrics, monotonicity commonly relates to the functional

relationship between two observed variables, and the functional relationship is the object of interest.

Monotonicity has been imposed as a shape restriction on the estimator in regression models (e.g.,

Mukerjee (1988), Ramsay (1988, 1998), and Mammen (1991)), and has been used in the identification

of treatment effects models (e.g, Manski (1997), and Manski and Pepper (2000, 2009)). By contrast,

when assuming use of monotone strategies, the monotonicity relates to the equilibrium functional

relationship between the observed action and the unobserved valuation, and the distribution of the

unobserved valuations is the object of interest.

Under Assumption 5, players use weakly increasing strategies, which accommodates the possibility

that player i with valuation θi takes the action ai(θi) and player i with valuation θ′
i ≠ θi also takes

the same action ai(θ′
i) = ai(θi). Such “flat spots” in the strategy would generally arise due to

pooling when there is discreteness of the action space. Such “flat spots” can also arise even without

discreteness in the action space, for example as discussed in Example 6.

Under Assumption 5, the set Θi(a∗
i ) = {θi : ai(θi) = a∗

i } of valuations θi that could possibly use

given action a∗
i ∈ Ai is necessarily a convex set (possibly empty or singleton). The term “convex”

is used to refer to the fact that if θ′
i ∈ Θi(a∗

i ) and θ′′
i ∈ Θi(a∗

i ), then any valuation that satisfies

θi ∈ [θ′
i, θ′′

i ] also satisfies θi ∈ Θi(a∗
i ).5 This follows the definition of a convex subset of an ordered

set (the set of valuations), which is slightly different from the more familiar use of “convex” for real

numbers. In this use of “convex,” θi is restricted to be from the set of valuations, rather than just an

arbitrary number. For example, the set {1, 2, 3} is a convex set of valuations if the valuations are

restricted to be integers (using the natural ordering of the integers).

Similar to Assumptions 3 and 4, Assumption 5 accommodates the possibility that only some players

use monotone strategies. However, for some parts of the sharpness result, and for an application

of Lemma 1, it needs to be assumed that all players use monotone strategies, although they need

not be “optimal” strategies. That would just require that players with larger valuations take larger

actions, but not necessarily “optimal” actions.
5 Suppose that ai(θ′

i) = a∗
i and ai(θ′′

i ) = a∗
i . Suppose without loss of generality that θ′

i ≤ θ′′
i . Since ai(·) is weakly

increasing, any valuation between θ′
i and θ′′

i also uses action a∗
i .



16 BRENDAN KLINE

The identification problem caused by the possibility of “flat spots” in the strategies is exacerbated

by the fact that the identification strategy accommodates dependent valuations. The beliefs of players

with different valuations are generically distinct even if they use the same action, so the identification

strategy must account for the fact that players that use the same action do not necessarily have

the same beliefs. To deal with this, Assumption 6 requires a monotone effect of beliefs on utility.

Lemma 1 shows this is a condition that follows from the assumption of monotone equilibrium, plus a

few other standard conditions on model primitives.

Assumption 6 (Monotone effect of counterfactual beliefs on utility). It holds that:

(a) For each i ∈ J , and any possible valuations θ′
i ≤ θi, ai(θi) from Assumption 5(a) satisfies

θiEΠi
(xi(ai(θi), a−i)|θ′

i) − EΠi
(ti(ai(θi), a−i)|θ′

i) ≥ θiEΠi
(xi(ai(θi), a−i)|θi) − EΠi

(ti(ai(θi), a−i)|θi).

(b) For each i ∈ J , and any possible valuations θi ≤ θ′′
i ,

sup
zi∈Ai

(θiEΠi
(xi(zi, a−i)|θi) − EΠi

(ti(zi, a−i)|θi)) ≥ sup
zi∈Ai

(θiEΠi
(xi(zi, a−i)|θ′′

i ) − EΠi
(ti(zi, a−i)|θ′′

i )).

A simpler and stronger assumption is: if θ′
i ≤ θ′′

i then θiEΠi
(xi(zi, a−i)|θ′

i) − EΠi
(ti(zi, a−i)|θ′

i) ≥

θiEΠi
(xi(zi, a−i)|θ′′

i ) − EΠi
(ti(zi, a−i)|θ′′

i ) for all zi ∈ Ai.6 Assumption 6 shares this structure, but

does not require the inequality to hold for all zi. This is important because there are games where

this stronger assumption is not true but Assumption 6 is true. Assumption 6 is satisfied if valuations

are independent, since then beliefs do not depend on the valuation.

The left side of the inequality in Assumption 6(a) is the ex interim expected utility experienced

by player i that has valuation θi that uses action ai(θi) and “counterfactually” has the beliefs of

valuation θ′
i ≤ θi. Changing only the beliefs part of this expression, the right side of the inequality

in Assumption 6(a) is the ex interim expected utility experienced by player i that has valuation θi

that uses action ai(θi) and has the beliefs of valuation θi. Assumption 6(b) is similar. The left side

of Assumption 6(b) is the “optimal” ex interim expected utility experienced by player i that has

valuation θi and has the beliefs of valuation θi. The right side of the inequality in Assumption 6(b) is

the supremum of the possible ex interim expected utilities experienced by player i that has valuation

θi that uses some action zi ∈ Ai and “counterfactually” has the beliefs of valuation θ′′
i ≥ θi. Therefore,

6It is obvious that this implies Assumption 6(a). Assumption 6(b) also is implied because
supzi∈Ai

(θiEΠi
(xi(zi, a−i)|θi) − EΠi

(ti(zi, a−i)|θi)) ≥ θiEΠi
(xi(zi, a−i)|θi) − EΠi

(ti(zi, a−i)|θi) ≥
θiEΠi

(xi(zi, a−i)|θ′′
i ) − EΠi

(ti(zi, a−i)|θ′′
i ) for all zi ∈ Ai.
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an interpretation of Assumption 6 is that “counterfactual” ex interim expected utility is suitably

weakly decreasing in the valuation that generates the “counterfactual” beliefs.

Assumption 6 involves the strategy ai(θi) and the beliefs Πi. When it is possible to get a good

intuitive sense of behavior in a particular game, this can be a useful way to state the assumption.

Alternatively, Lemma 1 provides sufficient conditions for Assumption 6.

Lemma 1 (Sufficient conditions for Assumption 6). Suppose either:

(I) For each i ∈ J , for any number vi that could be the valuation of player i (i.e., respecting

non-negativity, when applicable) there is a set Ãi(vi) ⊆ Ai such that for any distribution Qi

over A−i,

sup
zi∈Ai

(viEQi
(xi(zi, a−i)) − EQi

(ti(zi, a−i))) = sup
zi∈Ãi(vi)

(viEQi
(xi(zi, a−i)) − EQi

(ti(zi, a−i)))

with the property that for any number vi that could be the valuation of player i and for any

zi ∈ Ãi(vi), it holds that vixi(zi, a−i) − ti(zi, a−i) is a weakly decreasing function of a−i.

(II) Assumption I of Lemma 1 holds with “for any distribution Qi over A−i” replaced by “for

any belief Πi(a−i|θi) over A−i associated with some valuation θi” and “weakly decreasing

function of a−i” is replaced by “weakly decreasing function of a−i restricted to a−i from⋃
θi

support{Πi(a−i|θi)}.”

Suppose either:

(III) Valuations are affiliated.

(IV) For each i ∈ J , the distribution of θ−i|(θi = θ′
i) is stochastically smaller than the distribution

of θ−i|(θi = θ′′
i ) in the usual multivariate stochastic order, when θ′

i ≤ θ′′
i .

Suppose Assumption 4 (Correct beliefs) is satisfied. Suppose each player i ∈ I uses a weakly increasing

pure strategy, which need not be optimal; for this, it is more than sufficient that Assumption 5 (Weakly

increasing strategy is used) is satisfied with N1 = N . Suppose the strategies satisfy the constraints

ai(vi) ∈ Ãi(vi) for all valuations and players i ∈ J . Then Assumption 6 is satisfied.

Lemma 1 formalizes an intuitive set of sufficient conditions for Assumption 6. Assumptions I of

Lemma 1 and II of Lemma 1 require that ex post expected utility is a weakly decreasing function of

the actions of the other players, at least when player i with valuation vi takes an action from Ãi(vi).

The reason the result requires this monotonicity only when player i takes an action from Ãi(vi) is
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detailed further below. Obviously, it would be more than sufficient that ex post expected utility is

a weakly decreasing function of the actions of the other players regardless of the action taken by

player i, setting Ãi(vi) = Ai. Thus, essentially, these conditions require that player i prefers the

other players to take lower actions.

Assumptions III of Lemma 1 and IV of Lemma 1 are standard “positive dependence” assumptions

on the distribution of valuations.

The final conditions basically reiterate previous assumptions. Assumption 4 is assumed. It is

assumed that all players use a weakly increasing strategy, though this strategy does not need to be

optimal for any players i /∈ J . For those players, they must simply take actions that are a weakly

increasing function of their valuation, but this need not be an “optimal” action. Finally, it is assumed

that strategies of player i ∈ J satisfy the constraints imposed by Ã. Again, the reason for Ã is

detailed further below.

Intuitively, these sufficient conditions combine to justify the following argument, which suffices

for Assumption 6. Consider holding fixed the valuation that a player “actually experiences” for the

object. This is as in the statement of Assumption 6, where θi is held fixed in all parts of the statement

of the assumption. Then, as in the statement of Assumption 6(a), consider the impact on expected

utility of having the beliefs Πi(·|θ′
i) compared to Πi(·|θi), where θ′

i ≤ θi. By Assumptions III of

Lemma 1 and IV of Lemma 1, player i believes that the other players tend to have higher valuations

under Πi(·|θi) as compared to under Πi(·|θ′
i). Given the use of monotone strategies, this implies that

player i believes that the other players tend to use higher actions under Πi(·|θi) as compared to under

Πi(·|θ′
i). By the assumption that ex post expected utility is decreasing in the other players’ actions,

this means that player i is worse off under Πi(·|θi) as compared to under Πi(·|θ′
i), exactly in the sense

required by Assumption 6(a). It is similar for Assumption 6(b).

Ãi(vi) is a set of actions in which an optimal action for valuation vi is guaranteed to exist, by the

statement of Assumption I of Lemma 1. Assumption I of Lemma 1 requires that the model primitive

ex post utility is a weakly decreasing function of a−i, specifically when evaluated at zi ∈ Ãi(vi). That

condition is simply saying that player i would prefer the other players to take smaller actions. Of

course, it would suffice that ex post utility is weakly decreasing when evaluated at any zi.

However, in certain games, that “weakly decreasing” condition holding for all zi would be too

strong. That is why the assumption only requires “weakly decreasing” when evaluated at zi ∈ Ãi(vi).
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For example, consider first-price auctions (allowing complications like reserve prices, participation

costs, or multiple units). Regardless of the distribution Qi over A−i, player i with valuation vi will

always find it (weakly) optimal to place a bid weakly less than vi.7 Thus, it can be taken that

Ãi(vi) = Ai ∩ (−∞, vi]. And, in first price auctions, vixi(zi, a−i) − ti(zi, a−i) is a weakly decreasing

function of a−i for zi ∈ Ãi(vi). This says that a player’s ex post utility is weakly decreasing in the

other player’s bids, as long as the player has bid weakly less than its own valuation so that it actually

“wants” to win the auction at that bid.8 Similar logic applies to many other games.

Obviously, it would be possible to re-state the entire identification analysis by replacing Assump-

tion 6 (Monotone effect of counterfactual beliefs on utility) with the corresponding sufficient conditions

in Lemma 1. However, this would be unnecessarily limiting, because the conditions in Lemma 1

are not necessary for Assumption 6. In particular, as noted above, Assumption 6 is satisfied under

Assumption 1* (Independent valuations), regardless of any other condition.

Obviously, Assumption I of Lemma 1 implies Assumption II of Lemma 1. Nevertheless, both are

given as sufficient conditions. Only Assumption II of Lemma 1 is actually used in the proof, but this

depends on “true” beliefs. Assumption I of Lemma 1 emphasizes the fact that the condition doesn’t

need to refer to any particular properties of “true” beliefs.

If the direction of the monotonicity happens to be opposite that of Assumption 6, it is straightforward

to adjust the identification result accordingly (essentially the inequality z′
i < ai < z′′

i switches directions

in the statement of Theorem 1).

3.2.1. Discussion of assumptions in specific games. It is possible to discuss applications to specific

games by collecting and expanding on the previous discussion. Because the assumptions in Section 3.1

are standard baseline assumptions, there is nothing unique to say about them in specific games.

Further details of the following specific games are provided in Appendix B. The following discussion

exhibits a certain pattern in discussing the assumptions across the different specific games, which

reflects that fundamentally the assumptions hold “in general” for a wide class of games, so the main

question is providing concrete interpretations in concretely specified games.

7Consider a bid strictly greater than vi. If the bidder wins, it “gets” vi and transfers strictly more than vi (which could
involve a participation cost). If the bidder loses, it “gets” 0 and transfers at least 0 (which could involve a participation
cost). Thus, with a bid strictly greater than vi, the bidder gets at most 0 utility. This can also be accomplished by
placing a bid of 0 (or not participating in the auction). Thus, the bidder will always find it (weakly) optimal to place a
bid weakly less than vi.
8For bids above valuation, the player would prefer the other players to bid high enough so that it loses the auction.
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Example 1 (Contests, continuing from p. 9). Assumption 5 (Weakly increasing strategy is used)

requires that players with a higher valuation for winning the contest put forth more effort in the

contest. This is intuitive, and has been proven to hold under general conditions, as detailed in

Example 1 in Appendix B.

Assumption 6 (Monotone effect of counterfactual beliefs on utility) follows from Lemma 1. The

only condition that is non-trivial to check concerns the set Ãi(vi) from Assumption I of Lemma 1.

If all players transfer their “effort,” the relevant condition becomes vixi(zi, a−i) − zi is a weakly

decreasing function of a−i; assuming that vi ≥ 0, all this requires is that the probability that player i

wins the contest decreases with the efforts of the other players, which is a standard condition for any

“reasonable” contest. Thus, Ãi(vi) = Ai works.

If only the winning player transfers its “effort,” the relevant condition becomes (vi−zi)xi(zi, a−i) is a

weakly decreasing function of a−i; similar to the auction illustration above, Ãi(vi) = Ai(vi) ∩ (−∞, vi]

works under the sufficient condition that the probability that player i wins the contest decreases with

the efforts of the other players.

Example 2 (Auctions, continuing from p. 9). Assumption 5 (Weakly increasing strategy is used)

requires that players with higher valuations place higher bids. This is intuitive, and has been proven

to hold under general conditions, as detailed in Example 2 in Appendix B.

Assumption 6 (Monotone effect of counterfactual beliefs on utility) follows from Lemma 1. Again,

the only condition that is non-trivial to check is to find the set Ãi(vi) from Assumption I of Lemma 1.

The previous discussion already considers the case of a first-price auction. Alternatively, for example

in the case of an all-pay auction, the relevant condition becomes vixi(zi, a−i) − zi. Under the obvious

restriction that vi ≥ 0, so players actually want the object, this is weakly decreasing in a−i, in any

standard auction where the high bid is allocated the object, so Ãi(vi) = Ai works.

3.3. Definition of stochastic ordering. The identification strategy results in bounds on the

multivariate distribution of valuations in terms of the usual multivariate stochastic order.

Definition 1 (Usual multivariate stochastic order). A is stochastically larger than B in the usual

multivariate stochastic order exactly when there are Â and B̂ defined on the same probability space

such that Â has the same distribution as A and B̂ has the same distribution as B, and such that

Â ≥ B̂ with probability 1.
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By Shaked and Shanthikumar (2007, Theorem 6.B.1), Definition 1 is equivalent to the “standard”

definition of the usual multivariate stochastic order when A and B are ordinary real valued random

vectors. Definition 1 also accommodates the possibility that A or B are extended real valued random

vectors, possibly taking on the values ±∞, using the natural ordering of R.

The partial identification result establishes that the random vector of valuations θ = (θ1, θ2, . . . , θN )

is stochastically larger than a certain random vector and is stochastically smaller than another certain

random vector. The random vectors that are the upper and lower bounds for θ are themselves

identified quantities, and have a constructive definition as a function of the observable data. In some

particular cases, the identification result does not provide an informative lower bound and/or upper

bound, motivating the use of Definition 1 that allows the lower bound to sometimes be −∞ or the

upper bound to sometimes be ∞. See Remark 6.

As discussed in Shaked and Shanthikumar (2007, Chapter 6), the condition that ordinary random

vector A is stochastically larger than ordinary random vector B in the usual multivariate stochastic

order is equivalent to the condition that E(ϕ(A)) ≥ E(ϕ(B)) for all weakly increasing functions ϕ

for which the expectations exist. In particular, because ϕ(X) = 1[X ≤ t] is weakly decreasing in X,

the condition that A with distribution function FA is stochastically larger than B with distribution

function FB in the usual multivariate stochastic order implies that FA(t) ≤ FB(t) for all t ∈ Rd.

The condition that FA(t) ≤ FB(t) for all t ∈ Rd is known as the lower orthant order (e.g., Shaked

and Shanthikumar (2007, Chapter 6.G.1)). The lower orthant order is a distinct sense of stochastic

ordering. For random vectors, unlike for scalar random variables, the lower orthant ordering is

implied by, but does not imply, the usual multivariate stochastic ordering.

Bounds on the distribution of valuations in the usual multivariate stochastic order also imply

bounds on other quantities derived from the distribution of valuations, as discussed in Shaked and

Shanthikumar (2007, Chapter 6). In particular, ordinary random vector A stochastically larger

than ordinary random vector B in the usual multivariate stochastic order implies that a given order

statistic from A is stochastically larger than the same order statistic from B, by applying Shaked

and Shanthikumar (2007, Theorem 6.B.16 or Theorem 6.B.23). In their independent private values

English auction setup, Haile and Tamer (2003) have shown how to use lower orthant bounds on the

scalar distribution of valuations to bound the optimal reserve price.
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3.4. Game-structure identification of differences. An important step in the identification

strategy concerns identifying the rules of the game. If the econometrician has ex ante knowledge

of the rules, there is basically nothing to do on this point. This section allows the case that the

econometrician may not have ex ante knowledge of the rules. It is possible to point identify the rules

from the observed data, under weak conditions.

Let Ad
i be the support of Ai, the actions used in the data. Ad

i might be a proper subset of Ai.

Definition 2 (Game-structure identification of differences). The specification (ai, zi, z′
i, z′′

i ) ∈ A4
i

with z′
i, z′′

i ∈ Ad
i is a specification with game-structure identification of differences if

EP (xi(ai, A−i)|Ai = z′
i) − EP (xi(zi, A−i)|Ai = z′′

i ) and EP (ti(ai, A−i)|Ai = z′
i) − EP (ti(zi, A−i)|Ai = z′′

i )

are point identified. The set of specifications with game-structure identification of differences is Ri.

Each specification in Ri is a specification for which it is possible to evaluate the difference, for

any given valuation θi, between two specific payoffs: the payoff from the action ai given that the

players −i use the distribution of actions A−i|(Ai = z′
i) and the payoff from the action zi given that

the players −i use the distribution of actions A−i|(Ai = z′′
i ). The reason this particular comparison is

relevant will become more clear in the sketch of the identification strategy in Section 3.6. A general

feature of the identification strategy is that each additional specification in Ri provides additional

“identified restrictions” on the valuation that is consistent with a given observed action. Having

relatively more specifications in Ri is a necessary but not sufficient condition for the identified bounds

to be more informative. Even if Ri is as large as possible (i.e., Ri = A4
i ), it is possible there is not

point identification of valuations, for example due to “flat spots” in the strategies.

This definition allows both for the possibility that the econometrician has ex ante knowledge of

the rules, and the possibility that the econometrician recovers them from the observed data.

One sufficient condition for game-structure identification of differences at any given specification

(ai, zi, z′
i, z′′

i ) is for the allocation rule and transfer rule to be known ex ante (before observing the data)

by the econometrician. This is true because Definition 2 involves expected values of the allocation

rule and transfer rule with respect to the observed distribution of P (A). Thus, game-structure

identification of differences can fail at a particular specification only when the econometrician does

not ex ante know the allocation rule and/or transfer rule.
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In fact, for particular functional forms of the allocation rule and transfer rule, it suffices for the

econometrician to know less than the entire rule, since only differences are relevant for Definition 2.

For instance, this can accommodate an unknown (to the econometrician) participation cost.9

The econometrician knowing the rules of the game is the standard setup in identification in

structural econometrics. The rest of this section explains that it is possible to use the data to learn

the rules of the game. One additional requirement of that approach is that the observed data must

include the realized allocations and realized transfers, rather than just the realized actions.

This is because xi(ai, a−i) = EP (Xi|Ai = ai, A−i = a−i) and ti(ai, a−i) = EP (Ti|Ai = ai, A−i = a−i)

are point identified quantities under standard conditions on identification/estimation of conditional

expectations. The following lemma straightforwardly formalizes such standard conditions for game-

structure identification of differences. Let Ad be the support of the observed actions (A1, A2, . . . , AN ).

Lemma 2 (Sufficient conditions for game-structure identification of differences with unknown

allocation rule and/or transfer rule). Suppose that Assumptions 1 (Dependent valuations) and 2

(Action space is ordered) are satisfied. Suppose the data is P (A, X, T ). Suppose EP (Xi|Ai = ai, A−i =

a−i) and EP (Ti|Ai = ai, A−i = a−i) are point identified for any a ∈ Ad. Suppose A−i|(Ai = ai)

is point identified for any ai ∈ Ad
i . And suppose Ad = ∏

i Ad
i . Then xi(ai, a−i) and ti(ai, a−i)

are point identified for any ai ∈ Ad
i and a−i ∈ Ad

−i. And, then, EP (xi(zi, A−i)|Ai = z′
i) and

EP (ti(zi, A−i)|Ai = z′
i) are point identified for any zi ∈ Ad

i and z′
i ∈ Ad

i . And, then, any specification

of actions (ai, zi, z′
i, z′′

i ) ∈ (Ad
i )4 is a specification with game-structure identification of differences per

Definition 2.

This result requires point identification of certain observable conditional expectations and condi-

tional distributions. Relative to the identification literature, it is standard to use this as a primitive

condition on the population data.10

9In an auction, for example, a participation cost is a transfer paid by any bidder who places a bid (rather than taking
the “do not participate” action). Suppose that ti(ai, a−i) ≡ ti1(ai, a−i) + ti2(ai, a−i) ≡ ti1(ai, a−i) + ti2(ai), so that the
transfer is the sum of two transfers, one of which depends only on ai. Then the relevant difference is EP (ti(ai, A−i)|Ai =
z′

i) − EP (ti(zi, A−i)|Ai = z′′
i ) =

(
EP (ti1(ai, A−i)|Ai = z′

i) + ti2(ai)
)

−
(
EP (ti1(zi, A−i)|Ai = z′′

i ) + ti2(zi)
)
. It would

therefore suffice for the econometrician to know ti1(ai, a−i) for all (ai, a−i) and ti2(ai) − ti2(zi) at least for the specified
(ai, zi). If ti2 is the participation cost, and the cost of participating is the same for participating actions ai and zi, then
the econometrician knows that ti2(ai) − ti2(zi) = 0 even if the econometrician does not know the participation cost.
10Under almost no assumptions, kernel regression estimators of conditional expectations are consistent for almost all
realizations of the conditioning variable, with respect to the distribution of the conditioning variable (e.g., Stone (1977),
Devroye (1981), or Greblicki et al. (1984)). Under mild continuity assumptions, the result can be strengthened to show
consistency for all realizations of the conditioning variable, as in Bierens (1987). And, kernel estimators of conditional
distributions are consistent for almost all realizations of the conditioning variable, with respect to the distribution of
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If the econometrician uses the data to point identify the allocation rule and transfer rule, rather

than knows them ex ante, then only specifications (ai, zi, z′
i, z′′

i ) with ai ∈ Ad
i and zi ∈ Ad

i will

have game-structure identification of differences per Lemma 2. Fewer specifications in Ri results in

relatively wider identified bounds.

Independent valuations. Under Assumption 1* (Independent valuations), A−i is independent

of Ai and therefore z′
i and z′′

i effectively play no role in Definition 2. So, under Assumption 1*, a

specification (ai, zi) ∈ A2
i is a specification with game-structure identification of differences if it satisfies

the condition in Definition 2, without the conditioning on z′
i and z′′

i . Hence, under Assumption 1*,

the dimension of elements of Ri changes. By notation, the set of specifications with game-structure

identification of differences under Assumption 1* is R⊥
i . ⋆

3.5. Identification results. As often with partial identification results, the identification result can

account for an ex ante known lower bound or upper bound for the partially identified quantity.

Assumption 7 (Known bounds on valuations). For each i ∈ J , θi must be in the set [ΘLi, ΘUi].

Assumption 7 is the statement that the support of the valuations is contained within [ΘLi, ΘUi].11

The econometrician need not know the support of the valuations. Assumption 7 allows the econome-

trician to impose knowledge that θi is at least ΘLi and no more than ΘUi, even before observing the

data. In many games, it might be reasonable to set ΘLi = 0, reflecting that the object is known to

have non-negative value to all players. By setting ΘLi = −∞ and ΘUi = ∞, it is possible to check

the identification result without such known bounds.

Assumption 8 (Known bounds on actions). It holds that:

(a) For each i ∈ J , for any number vi that could be the valuation of player i, regardless of the

beliefs Qi over A−i held by player i, player i with valuation vi uses an action from the set

Ai ∩ [aLi(vi), aUi(vi)].

(b) For each i ∈ J , aLi(·) is either −∞ or a known continuous weakly increasing real-valued

function and aUi(·) is either ∞ or a known continuous weakly increasing real-valued function.
the conditioning variable, and all realizations of the conditioning variable if the conditional distribution depends in a
suitably continuous way on the conditioning variable (e.g., Stute (1986), Owen (1987), and Hall et al. (1999)).
11 A similar sort of assumption is commonly used in the partial identification of treatment effects, where it is commonly
assumed that the responses must be within a known range, while not requiring that all responses within that range are
actually achieved.
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Assumption 8 allows the econometrician to impose knowledge of basic properties of the actions used

by the players. For example, in first-price auctions, a plausible specification is aLi(vi) ≡ inf Ai and

aUi(vi) ≡ vi, based on the previous discussion of the fact that a player’s optimal bid can always be taken

to be weakly less than the player’s valuation. The same would be true in many other games. Similar

to Assumption 7, by setting aLi(vi) ≡ −∞ and aUi(vi) ≡ ∞, it is possible to check the identification

result without such known properties. (In fact, this would be equivalent to setting aLi(vi) ≡ inf Ai

and aUi(vi) ≡ sup Ai.) Define a−1
Li (ai) = sup{vi : aLi(vi) ≤ ai} and a−1

Ui (ai) = inf{vi : aUi(vi) ≥ ai}.

For example, when aLi(vi) ≡ inf Ai and aUi(vi) ≡ vi, a−1
Li (ai) = sup{vi : inf Ai ≤ ai} = supR = ∞

and a−1
Ui (ai) = inf{vi : vi ≥ ai} = ai. The specification aLi(vi) ≡ inf Ai and aUi(vi) ≡ vi has no

identifying power for the upper bound for the distribution of valuations.

To state the identification result, define the following terms. The reason these terms are relevant

will be shown in the sketch of the identification strategy in Section 3.6. The expression in Equation 4

for ΦLi(·) involves a−1
Ui (·); the different subscripts is correct. Similar issues arise in other expressions.

(3) Φ(1)
Li (ai) = sup

zi,z′
i,z

′′
i



EP (ti(ai,A−i)|Ai=z′
i)−EP (ti(zi,A−i)|Ai=z′′

i )
EP (xi(ai,A−i)|Ai=z′

i)−EP (xi(zi,A−i)|Ai=z′′
i ) :

z′
i < ai < z′′

i ,

zi ∈ {Ai : EP (xi(ai, A−i)|Ai = z′
i) − EP (xi(zi, A−i)|Ai = z′′

i ) > 0},

(ai, zi, z′
i, z′′

i ) ∈ Ri

(4) ΦLi(ai) = max{Φ(1)
Li (ai), ΘLi, a−1

Ui (ai)}

(5) Φ(1)
Ui (ai) = inf

zi,z′
i,z

′′
i



EP (ti(ai,A−i)|Ai=z′
i)−EP (ti(zi,A−i)|Ai=z′′

i )
EP (xi(ai,A−i)|Ai=z′

i)−EP (xi(zi,A−i)|Ai=z′′
i ) :

z′
i < ai < z′′

i ,

zi ∈ {Ai : EP (xi(ai, A−i)|Ai = z′
i) − EP (xi(zi, A−i)|Ai = z′′

i ) < 0},

(ai, zi, z′
i, z′′

i ) ∈ Ri
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(6) ΦUi(ai) = min{Φ(1)
Ui (ai), ΘUi, a−1

Li (ai)}

Note that if ΘLi = −∞, then ΘLi has no impact on ΦLi(ai), consistent with the previous discussion of

Assumption 7. The same is true when ΘUi = ∞. And a similar statement is true for Assumption 8.

Let

(7) ΥLi(ai) = sup
a′

i≤ai,a′
i∈Ad

i

ΦLi(a′
i) and ΥUi(ai) = inf

a′
i≥ai,a′

i∈Ad
i

ΦUi(a′
i).

Section 3.6 contains a sketch of the identification strategy, explaining the following main result.

Theorem 1. Under Assumptions 1 (Dependent valuations), 2 (Action space is ordered), 3 (Optimal

strategy is used), 4 (Correct beliefs), 5 (Weakly increasing strategy is used), 6 (Monotone effect

of counterfactual beliefs on utility), 7 (Known bounds on valuations), and 8 (Known bounds on

actions), the distribution of valuations (θ1, θ2, . . . , θN1) is partially identified, and the identification is

constructive, because the distribution of (θ1, θ2, . . . , θN1) is stochastically larger than the distribution

of (ΥL1(A1), ΥL2(A2), . . . , ΥLN1(AN1)) and is stochastically smaller than the distribution of

(ΥU1(A1), ΥU2(A2), . . . , ΥUN1(AN1)) , in the sense of the usual multivariate stochastic order, where

(A1, A2, . . . , AN1) is distributed according to the data P (A, X, T ) and ΥLi(·) and ΥUi(·) are the

identifiable functions given in Equation 7.

Independent valuations. With independent valuations: replace Assumption 1 (Dependent val-

uations) with Assumption 1* (Independent valuations), drop Assumption 6 (Monotone effect of

counterfactual beliefs on utility), and replace the Υ functions with the Γ functions defined in Equa-

tion 12, below.

(8) Ξ(1)
Li (ai) = sup

zi



EP (ti(ai,A−i))−EP (ti(zi,A−i))
EP (xi(ai,A−i))−EP (xi(zi,A−i)) :

zi ∈ {Ai : EP (xi(ai, A−i)) − EP (xi(zi, A−i)) > 0},

(ai, zi) ∈ R⊥
i

(9) ΞLi(ai) = max{Ξ(1)
Li (ai), ΘLi, a−1

Ui (ai)}
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(10) Ξ(1)
Ui (ai) = inf

zi



EP (ti(ai,A−i))−EP (ti(zi,A−i))
EP (xi(ai,A−i))−EP (xi(zi,A−i)) :

zi ∈ {Ai : EP (xi(ai, A−i)) − EP (xi(zi, A−i)) < 0},

(ai, zi) ∈ R⊥
i

(11) ΞUi(ai) = min{Ξ(1)
Ui (ai), ΘUi, a−1

Li (ai)}

(12) ΓLi(ai) = sup
a′

i≤ai,a′
i∈Ad

i

ΞLi(a′
i) and ΓUi(ai) = inf

a′
i≥ai,a′

i∈Ad
i

ΞUi(a′
i).

Further, under Assumption 1* (Independent valuations), game-structure identification of differences

can be established: EP (xi(zi, A−i)) = EP (Xi|Ai = zi) and EP (ti(zi, A−i)) = EP (Ti|Ai = zi). ⋆

Remark 2 (Relaxing equilibrium assumptions). Bayesian Nash equilibrium requires that all players

act rationally given beliefs (Assumption 3 with N1 = N) and have correct beliefs (Assumption 4

with N1 = N). This assumption of equilibrium is standard, but in some settings it may be too

strong.12 In auction models, for example, it might be that some “novice” bidders do not satisfy those

assumptions whereas “experienced” bidders do satisfy those assumptions. The difference between

“novice” and “experienced” might be due to learning from participating in previous auctions, or some

other reason that is observable by the econometrician, so that the econometrician can distinguish

between “novices” and “experienced” players. For example, Hortaçsu and Puller (2008) find that

“large” firms are more strategically sophisticated than “small” firms. When N1 < N , the identification

analysis assumes only that players 1 through N1 have correct beliefs and act rationally given those

beliefs. For example, those players could have correct beliefs that the other players are “irrational.”

The identification strategy in this paper can also be extended to allow for more substantial violations

of Assumption 3 (Optimal strategy is used).

12Identification relaxing the assumption of equilibrium, or related questions, has been considered in Aradillas-López and
Tamer (2008), Haile et al. (2008), Kline and Tamer (2012), Kline (2015, 2018), Syrgkanis et al. (2018), and Magnolfi
and Roncoroni (2023). Kline (2018) includes a discussion of the tradeoffs between equilibrium assumptions and
assumptions on the data, for identification in entry games. See Maskin (2011) for a commentary on Nash equilibrium.
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Assumption 3* (ε-optimal strategy is used). For each i ∈ J , there is a known εi ≥ 0, such that

for each possible valuation θi, player i uses a pure strategy ai(θi) when it has valuation θi, with

θiEΠi
(xi(ai(θi), a−i)|θi)−EΠi

(ti(ai(θi), a−i)|θi)+εi ≥ maxzi∈Ai
(θiEΠi

(xi(zi, a−i)|θi) − EΠi
(ti(zi, a−i)|θi)),

so the action taken according to the strategy ai(θi) comes within εi utils of maximizing ex interim

expected utility.

This assumption follows the idea of an ϵ-equilibrium from Radner (1980) and others. As illustrated

in the sketch of the identification strategy in Section 3.6, it is easy to adjust the partial identification

strategy to use Assumption 3* (ε-optimal strategy is used) rather than Assumption 3 (Optimal

strategy is used). The resulting Φ(1) and Ξ(1) in Theorem 1 are adjusted to have an additional −εi in

the numerator. (Because of the signs of the denominator, this results in a reduced lower bound and

an increased upper bound.) Furthermore, εi would be added to the upper bound on “foregone” utility

in Theorem 4. This identification result would still involve the assumption of the use of monotone

strategies, that are “approximately” optimal per Assumption 3*.

Remark 3 (The effect of Assumption 1* (Independent valuations)). The identified bounds are

basically not tightened by the use of Assumption 1* in the identification analysis, assuming that

Assumption 1* holds in the data generating process. Rather, the functional form of the bounds are

simplified when imposing Assumption 1*, and are valid under a reduced set of other assumptions.

Note that this claim holds fixed the data generating process and varies the assumptions imposed by

the econometrician. It is not about differences in the bounds depending on whether Assumption 1*

(Independent valuations) is satisfied in the data generating process.

If the data generating process satisfies Assumption 1* (Independent valuations), actions are also

independent, so the conditioning on Ai is dropped from the expressions for Φ in Equations 3 and 5.

This would be true whether or not the econometrician imposes Assumption 1* on the identification

analysis. In that case, Φ becomes almost the same as Ξ in Equations 8 and 10. One possible difference

concerns the bounds at the smallest/largest actions used in the data, where ΦL is the maximum

of the ex ante lower bound and a−1
Ui (·) evaluated at the action, and ΦU is the minimum of the ex

ante upper bound and a−1
Li (·) evaluated at the action, due to the role of z′

i and z′′
i . But Ξ may be a

different value. Another possible difference concerns the possibly differential impact of the sets Ri
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and R⊥
i .13 Since the rules can be identified from the data per Lemma 2, the only difference could be

from ex ante knowledge. Combined with the ideas of Remark 5, this is unlikely to have much effect.

Remark 4 (Weakening the bounds). The identified bounds involve dividing by EP (xi(ai, A−i)|Ai =

z′
i) − EP (xi(zi, A−i)|Ai = z′′

i ), which may be close to zero. Trivially, the bounds remain valid if there

is a further restriction to values of (zi, z′
i, z′′

i ) such that this term is a pre-selected tolerance away

from zero. This can be relevant for an empirical application of the bounds, similar to the trimming

of derivatives in the derivative-based approach to identification in auctions (e.g., Guerre et al. (2000,

page 541) or Li et al. (2002, page 180)).

Remark 5 (The effect of ex ante knowledge of the rules). This remark provides an argument for

why ex ante knowledge of the rules should be generally expected to have relatively modest tightening

effect on the bounds, as compared to identification of the rules from the data. This is seen in the

numerical illustration in Section 4.

Per Lemma 2, the data can be used to ensure that (Ad
i )4 ⊆ Ri. Moreover, by Definition 2, any

element of Ri of the form (ai, zi, z′
i, z′′

i ) is such that {z′
i, z′′

i } ∈ Ad
i . And given the usage in the

identification result, only specifications with ai ∈ Ad
i are relevant. Therefore, ex ante knowledge of

the rules could tighten the identified bounds only when it implies that a specification zi /∈ Ad
i is part

of a specification of an element of Ri.

This can be expected to be a modest (or zero) effect. The fact that zi /∈ Ad
i means that every

valuation actually in the real data has an associated utility maximizing action that is not zi. Otherwise,

zi would be used in the data. In a very general sense, intuitively the identification strategy recovers

bounds on the distribution of valuations from the utility maximization problem facing each player.

As such, ignoring these “irrelevant” actions can be expected to have modest effect.

However, there are some caveats to this. Actually, the identification strategy must take a somewhat

indirect approach to using the utility maximization problem facing each player, in particular because

beliefs are unknown to the econometrician. It is possible that this “indirect approach” ends up with

tighter bounds when the rules are ex ante known even for “irrelevant” zi, because such zi may not
13In principle, the set of (ai, zi) ∈ R⊥

i could be different from the set of (ai, zi) consistent with a specification of
(ai, zi, z′

i, z′′
i ) ∈ Ri, in which case the infs/sups in Φ would be over a different set of values of (ai, zi) compared to in Ξ.

If EP (xi(ai, A−i)|Ai = z′
i) − EP (xi(zi, A−i)|Ai = z′′

i ) and EP (ti(ai, A−i)|Ai = z′
i) − EP (ti(zi, A−i)|Ai = z′′

i ) are point
identified for given specification of (ai, zi, z′

i, z′′
i ), then under the independence assumption also EP (xi(ai, A−i)) −

EP (xi(zi, A−i)) and EP (ti(ai, A−i)) − EP (ti(zi, A−i)) are point identified. Thus, the set R⊥
i contains every value of

(ai, zi) consistent with an element of the set Ri.
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actually be “irrelevant” relative to the “indirect approach” to the utility maximization problem. Also,

a valuation that is possible according to a given distribution within the identified set may not actually

exist in the real data. (That is, the identification result does not generally point identify the support

of valuations.) In that case, that valuation might actually not find such an action zi to be “irrelevant”

even though all of the “real” valuations did find it to be irrelevant.

Remark 6 (Possibility of uninformative bounds). It is possible that ΦLi(ai) is uninformative at some

ai, or that ΦUi(ai) is uninformative at some ai. Specifically, ΦLi(ai) = −∞ exactly when ΘLi = −∞,

a−1
Ui (ai) = −∞, and there is no (ai, zi, z′

i, z′′
i ) ∈ Ri with z′

i < ai < z′′
i and EP (xi(ai, A−i)|Ai =

z′
i)−EP (xi(zi, A−i)|Ai = z′′

i ) > 0. And, ΦUi(ai) = ∞ exactly when ΘUi = ∞, a−1
Li (ai) = ∞, and there

is no (ai, zi, z′
i, z′′

i ) ∈ Ri with z′
i < ai < z′′

i and EP (xi(ai, A−i)|Ai = z′
i) − EP (xi(zi, A−i)|Ai = z′′

i ) < 0.

Similarly, it is possible that the actual lower bound ΓLi(ai) is uninformative at some ai, or that the

actual upper bound ΓUi(ai) is uninformative at some ai, when the above holds for all weakly smaller

actions used in the data, or weakly larger actions used in the data, respectively, per Equation 12. If

this happens, then the lower bound distribution and/or the upper bound distribution is actually an

extended real valued random variable, taking on the values ±∞ with positive probability. If desired,

this can easily be avoided by setting ΘLi and ΘUi to be extremely large in magnitude, but still finite.

3.6. Sketch of identification strategy. Under Assumption 3 (Optimal strategy is used), for any
valuation θi, any action ãi(θi) used by player i solves the utility maximization problem in Equation 2,
so

θiEΠi
(xi(ãi(θi), a−i)|θi) − EΠi

(ti(ãi(θi), a−i)|θi) + εi ≥ max
zi∈Ai

(
θiEΠi

(xi(zi, a−i)|θi) − EΠi
(ti(zi, a−i)|θi)

)
,(13)

with εi = 0. The reason this sketch allows for non-zero εi is explained in Remark 2.
Under Assumption 4 (Correct beliefs), Equation 13 implies

θiEP (xi(ãi(θi), A−i)|θi) − EP (ti(ãi(θi), A−i)|θi) + εi ≥ max
zi∈Ai

(
θiEP (xi(zi, A−i)|θi) − EP (ti(zi, A−i)|θi)

)
.(14)

From the previous discussion of Assumption 5 (Weakly increasing strategy is used), for any a∗
i ∈ Ai

there is a convex set (in the sense of being a convex subset of the ordered set of valuations)

(15) Θi(a∗
i ) = {θi : ai(θi) = a∗

i }
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of valuations such that player i with valuation θi uses action a∗
i if and only if θi ∈ Θi(a∗

i ). Moreover,

if ai ̸= a′
i then Θi(ai) and Θi(a′

i) are disjoint, given that θi ∈ Θi(ai) means ai(θi) = ai and θ′
i ∈ Θi(a′

i)

means ai(θ′
i) = a′

i, so ai ̸= a′
i implies it must be that θi ̸= θ′

i. Further, if ai < a′
i and Θi(ai) and

Θi(a′
i) are both non-empty then sup Θi(ai) ≤ inf Θi(a′

i), given that θi ∈ Θi(ai) implies ai(θi) = ai and

θ′
i ∈ Θi(a′

i) implies ai(θ′
i) = a′

i, so by monotonicity of ai(·) it must be that θi < θ′
i.

Therefore, for any zi and z′
i ∈ Ad

i ,

(16) EP (xi(zi, A−i)|Ai = z′
i) = EP (xi(zi, A−i)|θi ∈ Θi(z′

i)) = EP (EP (xi(zi, A−i)|θi)|θi ∈ Θi(z′
i))

(17) EP (ti(zi, A−i)|Ai = z′
i) = EP (ti(zi, A−i)|θi ∈ Θi(z′

i)) = EP (EP (ti(zi, A−i)|θi)|θi ∈ Θi(z′
i)).

Hence, the beliefs expressions in Equation 14 conditioning on θi are generically not point identifiable,

because generically multiple valuations use any given z′
i ∈ Ai.

Equation 14 implies, under Assumptions 4 (Correct beliefs), 5(a) (Weakly increasing strategy is

used), and 6 (Monotone effect of counterfactual beliefs on utility), for θ′
i < θi < θ′′

i , for any zi ∈ Ai,

θiEP (xi(ai(θi), A−i)|θ′
i) − EP (ti(ai(θi), A−i)|θ′

i) + εi(18a)

≥ θiEP (xi(ai(θi), A−i)|θi) − EP (ti(ai(θi), A−i)|θi) + εi(18b)

≥ max
zi∈Ai

(θiEP (xi(zi, A−i)|θi) − EP (ti(zi, A−i)|θi))(18c)

≥ sup
zi∈Ai

(θiEP (xi(zi, A−i)|θ′′
i ) − EP (ti(zi, A−i)|θ′′

i ))(18d)

≥ θiEP (xi(zi, A−i)|θ′′
i ) − EP (ti(zi, A−i)|θ′′

i ).(18e)

In Equation 18, Assumption 4 is used to substitute between EP and EΠi
. The first step is an

implication of Assumption 6(a), since θ′
i < θi. The second step is Equation 14. The third step is an

implication of Assumption 6(b), since θ′′
i > θi. The fourth step uses the definition of supremum.

Then, applying Equation 18, and using Assumption 5 (Weakly increasing strategy is used) via the

Θi construction, for any zi ∈ Ai, and any z′
i < ai(θi) < z′′

i with {z′
i, z′′

i } ∈ Ad
i :

θiEP (xi(ai(θi), A−i)|Ai = z′
i) − EP (ti(ai(θi), A−i)|Ai = z′

i) + εi(19)

= θiEP (xi(ai(θi), A−i)|θ′
i ∈ Θi(z′

i)) − EP (ti(ai(θi), A−i)|θ′
i ∈ Θi(z′

i)) + εi
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≥ θiEP (xi(ai(θi), A−i)|θi) − EPi
(ti(ai(θi), A−i)|θi) + εi

≥ θiEP (xi(zi, A−i)|θ′′
i ∈ Θi(z′′

i )) − EP (ti(zi, A−i)|θ′′
i ∈ Θi(z′′

i ))

= θiEP (xi(zi, A−i)|Ai = z′′
i ) − EP (ti(zi, A−i)|Ai = z′′

i ).

Specifically, the first and fourth steps are implications of Equations 16 and 17, relying on Assump-

tion 5. The second step is an implication of the inequality between Equations 18a and 18b. The

third step is an implication of the inequality between Equations 18b and 18e. And consequently,

θi ≥ EP (ti(ai(θi), A−i)|Ai = z′
i) − εi − EP (ti(zi, A−i)|Ai = z′′

i )
EP (xi(ai(θi), A−i)|Ai = z′

i) − EP (xi(zi, A−i)|Ai = z′′
i )(20)

∀z′
i < ai(θi) < z′′

i , {z′
i, z′′

i } ∈ Ad
i ,

zi ∈ {Ai : EP (xi(ai(θi), A−i)|Ai = z′
i) − EP (xi(zi, A−i)|Ai = z′′

i ) > 0}

θi ≤ EP (ti(ai(θi), A−i)|Ai = z′
i) − εi − EP (ti(zi, A−i)|Ai = z′′

i )
EP (xi(ai(θi), A−i)|Ai = z′

i) − EP (xi(zi, A−i)|Ai = z′′
i )

∀z′
i < ai(θi) < z′′

i , {z′
i, z′′

i } ∈ Ad
i ,

zi ∈ {Ai : EP (xi(ai(θi), A−i)|Ai = z′
i) − EP (xi(zi, A−i)|Ai = z′′

i ) < 0}

Restricted to specifications with game-structure identification of differences, it follows that

θi ≥ EP (ti(ai(θi), A−i)|Ai = z′
i) − εi − EP (ti(zi, A−i)|Ai = z′′

i )
EP (xi(ai(θi), A−i)|Ai = z′

i) − EP (xi(zi, A−i)|Ai = z′′
i )(21)

∀z′
i < ai(θi) < z′′

i , zi ∈ {Ai : EP (xi(ai(θi), A−i)|Ai = z′
i) − EP (xi(zi, A−i)|Ai = z′′

i ) > 0}

(ai(θi), zi, z′
i, z′′

i ) ∈ Ri

θi ≤ EP (ti(ai(θi), A−i)|Ai = z′
i) − εi − EP (ti(zi, A−i)|Ai = z′′

i )
EP (xi(ai(θi), A−i)|Ai = z′

i) − EP (xi(zi, A−i)|Ai = z′′
i )

∀z′
i < ai(θi) < z′′

i , zi ∈ {Ai : EP (xi(ai(θi), A−i)|Ai = z′
i) − EP (xi(zi, A−i)|Ai = z′′

i ) < 0}

(ai(θi), zi, z′
i, z′′

i ) ∈ Ri

Consequently, the valuation corresponding to ai must be between Φ(1)
Li (ai) and Φ(1)

Ui (ai) from

Equations 3 and 5. The other components in the expressions of Equations 4 and 6 are established

in the proof of Theorem 1. By another application of Assumption 5 (Weakly increasing strategy is

used), any valuation consistent with ai is between supa′
i≤ai,a′

i∈Ad
i

ΦLi(a′
i) and infa′

i≥ai,a′
i∈Ad

i
ΦUi(a′

i).
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3.7. Sharpness.

3.7.1. Independent valuations. Under Assumption 1* (Independent valuations), the identification

result in Theorem 1 is “nearly sharp” in the sense formalized by the following result. The definition

of “nearly sharp” is discussed in more detail in Remark 7.

Theorem 2. Suppose that:

(I) For all i ∈ J , EP (xi(zi, A−i)) and EP (ti(zi, A−i)) are point identified for zi ∈ Ki ⊇ Ad
i .

Then there is at least one specification of EP (xi(zi, A−i)) and EP (ti(zi, A−i)) for zi /∈ Ki such that, if

it holds that:

(II) Assumptions 2 and 8(b) hold.

(III) For all i ∈ J , if ai ∈ Ad
i and zi ∈ Ki is such that EP (xi(ai, A−i)) = EP (xi(zi, A−i)), then

EP (ti(ai, A−i)) ≤ EP (ti(zi, A−i)).

(IV) The actions of different players are independent, in the sense that P (A) = P1(A1)P2(A2) · · · PN (AN ).

(V) For all i ∈ J , Γi(·) defined on Ad
i is a strictly increasing function such that ΓLi(·) ≤ Γi(·) ≤

ΓUi(·).

Then there is a distribution of θ that is marginally equal to the distribution of valuations

(Γ1(A1), Γ2(A2), . . . , ΓN1(AN1)) that is such that in the game with that specification of the allocation

and transfer rule, there are corresponding weakly increasing strategies resulting in the same distribution

of actions as P (A), and such that Assumptions 1* (Independent valuations), 3 (Optimal strategy is

used), 4 (Correct beliefs), 5 (Weakly increasing strategy is used), 7 (Known bounds on valuations), 8

(Known bounds on actions) are satisfied.

Theorem 3. Under the assumptions used for the independent valuations result in Theorem 1,

Assumptions I of Theorem 2 to IV of Theorem 2 hold and there is at least one specification of

Γi(·) that satisfies Assumption V of Theorem 2. Moreover, for i ∈ J , as long as Assumption 7

holds for finite specifications of ΘLi and ΘUi, for any ϵ > 0 there are such Γi(·) with the further

property that 0 ≤ supai∈Ad
i

(Γi(ai) − ΓLi(ai)) < ϵ and there are such Γi(·) with the further property that

0 ≤ supai∈Ad
i

(ΓUi(ai) − Γi(ai)) < ϵ. Moreover, any distributional property of F (θ) that is preserved by

weakly-increasing component-wise transformations is also a property of the distribution of valuations

(Γ1(A1), Γ2(A2), . . . , ΓN1(AN1)) from Theorem 2.
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The assumptions of the identification analysis are sufficient conditions for Theorem 2, per Theorem 3.

The reason for writing Theorem 2 in this way is explained below.

Theorem 2 establishes that elements of the identified set from Theorem 1 under Assumption 1*

(Independent valuations) indeed do satisfy the assumptions of the identification analysis, per the

conclusion of Theorem 2. If N1 = N in the assumptions, this would be a corresponding Bayesian

Nash equilibrium; otherwise, only players 1 through N1 would satisfy those assumptions.

Relevant when N1 < N , Theorem 2 involves a distribution of the entire vector θ, even though

only (θ1, θ2, . . . , θN1) is bounded in Theorem 1. Theorem 2 takes the displayed distribution of

(θ1, θ2, . . . , θN1) from the identified set from Theorem 1 and finds a joint distribution of the entire

vector θ that is marginally equal to the displayed distribution of (θ1, θ2, . . . , θN1). It does this because

some of the assumptions are only sensible in relation to a distribution of the entire vector θ. For

example, checking whether Assumption 3 (Optimal strategy is used) is true requires a full specification

of a distribution of θ in order to construct the distribution of actions of players −i from the perspective

of player i.

Theorem 2 allows that some parts of the expected allocation rule and expected transfer rule may

remain unknown to the econometrician even after observing the data. This would happen if the

rules are ex ante unknown to the econometrician, and certain actions are never used in the observed

data. Theorem 2 establishes that there is at least one specification of the expected allocation rule

and expected transfer rule (basically, a specification that “fills in” what is both ex ante unknown

and not identifiable from the data) such that the result described above obtains for the game with

that specification of the rules. In the special case that all parts of the expected allocation rule and

expected transfer rule are point identified after observing the data (or are known ex ante), Ki = Ai.

In short, Theorem 2 can be used in two main ways.

Theorem 2 can be used to establish “near sharpness” of the identified set from Theorem 1 under

Assumption 1* (Independent valuations), by using Theorem 3 to establish the sufficient conditions

for Theorem 2, thereby implying that elements of the identified set from Theorem 1 indeed do satisfy

the assumptions of the identification analysis. See Remark 7 for an explanation of “nearly sharp.”

Theorem 2 can also be used as a set of minimal sufficient conditions for using the identified set. If

Assumptions I of Theorem 2 to IV of Theorem 2 are satisfied, the distributions from the identified

set from Theorem 1 considered by Assumption V of Theorem 2 indeed do satisfy the assumptions of
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the identification analysis. This is similar to the use of non-emptiness of an identified set as evidence

for correct specification. Since Assumptions I of Theorem 2 to IV of Theorem 2 do not “directly”

concern the valuations, they do not appear in the expression for the identified set from Theorem 1.

Assumption III of Theorem 2 requires that if two actions have the same expected allocation, and

one of them is used in the data, then that action has a weakly better transfer compared to the

other action. Assumption IV of Theorem 2 requires that actions are independent across players.

Assumption V of Theorem 2 is the condition that the identified set is non-empty, and indeed contains

strictly increasing functions between the functions ΓLi(·) and ΓUi(·).

Remark 7 (The sense of “nearly sharp”). If the lower bound function ΓLi(·) (or the upper bound

function ΓUi(·)) is the same for two or more actions, then the distribution of valuations that is exactly

the lower bound (or the upper bound) from Theorem 1 may not be an element of the sharp identified

set, as per Theorem 2. This is because the construction in the proof of Theorem 2 would require that

those two or more actions are used by a single valuation, which is inconsistent with the assumption of

pure strategies as in Assumption 5(a) (Weakly increasing strategy is used). However, per Theorem 3,

the lower bound distribution and the upper bound distribution can be approached arbitrarily closely,

and thus are “limit points” of the sharp identified set. In that sense, the identified set from Theorem 1

under Assumption 1* (Independent valuations) is “nearly sharp.”

3.7.2. Dependent valuations. Under Assumption 1 (Dependent valuations), the identification result

in Theorem 1 appears to not share this sharpness property, and it appears quite difficult to provide a

useful14 characterization of the sharp identified set with dependent valuations, as a consequence of

the need to bound player beliefs. Still, there is a sense in which the identification result is “sharp

in the limit” in that it limits to point identification when the action space either is or limits to a

continuous/interval action space, per Section 3.8 and Appendix A.

Furthermore, under Assumption 1 (Dependent valuations), the identified bounds in Theorem 1

satisfy a different definition of “nearly sharp.” The standard definition of “sharpness” requires that

each element of the identified set satisfies all of the assumptions used in the identification analysis

(and is consistent with the observed data). This definition of “nearly sharp” requires only that each
14Of course, it is always possible to trivially write down the identified set by its definition that it is a distribution of
valuations consistent with the data and the assumptions. This might not be particularly useful in empirical practice,
since it would presumably require the econometrician to compute a monotone Bayesian Nash equilibrium for every
possible distribution of valuations, and check whether it matches the distribution of observed actions. The bounds in
Theorem 1 have a closed-form expression that is simple to implement empirically.
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element of the identified set “nearly” satisfies all of the assumptions used in the identification analysis

(and is consistent with the observed data). Specifically, this definition of “nearly sharp” allows that

players only “nearly” maximize utility, thereby allowing for a deviation from Assumption 3 (Optimal

strategy is used). Essentially, this establishes an ϵ-equilibrium, as in Radner (1980).

In order to simplify the statement of the result, define

(22) χi(ai, zi) = EP (xi(ai, A−i)|Ai = zi) and τi(ai, zi) = EP (ti(ai, A−i)|Ai = zi)

Theorem 4. Suppose that:

(I) For all i ∈ J , xi(zi, a−i) and ti(zi, a−i) are point identified for (zi, a−i) ∈ Ki = Ki
i × K−i

i

where Ki
i ⊇ Ad

i and K−i
i ⊇ Ad

−i.

Then there is at least one specification of xi(zi, a−i) and ti(zi, a−i) for (zi, a−i) /∈ Ki such that, if it

holds that:

(II) Assumptions 2 and 8(b) hold.

(III) For all i ∈ J , Υi(·) defined on Ad
i is a strictly increasing function such that ΥLi(·) ≤ Υi(·) ≤

ΥUi(·).

Then:

(a) There is a distribution of θ that is marginally equal to the distribution of valuations

(Υ1(A1), Υ2(A2), . . . , ΥN1(AN1)) that is such that in the game with that specification of the

allocation and transfer rule, there are corresponding weakly increasing strategies resulting in

the same distribution of actions as P (A), and such that Assumptions 1 (Dependent valuations),

4 (Correct beliefs), 5 (Weakly increasing strategy is used), 7 (Known bounds on valuations)

and 8 (Known bounds on actions) are satisfied and the amount of utility foregone by player

i ∈ J with valuation Υi(ai) for some ai ∈ Ad
i is no more than supzi∈Ki

i,zi ̸=ai
inf{z′

i,z
′′
i }∈Zi(ai,zi)(

−
[
Υi(ai)

[
χi(ai, ai) − χi(ai, z′

i) − [χi(zi, ai) − χi(zi, z′′
i )]

]
−

[
τi(ai, ai) − τi(ai, z′

i) − [τi(zi, ai) −

τi(zi, z′′
i )]

]])
, where Zi(ai, zi) = {{z′

i, z′′
i } ∈ Ad

i : z′
i < ai < z′′

i and χi(ai, z′
i) ̸= χi(zi, z′′

i )},

using the expressions in Equation 22.

(b) Further, if it is known that player i ∈ J only considers actions in the set ˜̃Ai, then the outer

sup on foregone utility can be taken over the set zi ∈ Ki
i ∩ ˜̃Ai, zi ̸= ai, with the interpretation

being that foregone utility is only relative to the actions in ˜̃Ai.
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(c) Further, suppose that Ki = A in Assumption I of Theorem 4. Suppose that all players use

weakly increasing strategies, including any i /∈ J . Suppose that Assumption I of Lemma 1

holds. Suppose that, for each i ∈ J , aLi(·) and aUi(·) from Assumption 8 (Known bounds on

actions) are such that if ai and vi are such that ai ∈ [aLi(vi), aUi(vi)], then ai ∈ Ãi(vi) from

Assumption I of Lemma 1. Suppose either Assumption III of Lemma 1 or Assumption IV of

Lemma 1 holds. Then, it also holds that Assumption 6 (Monotone effect of counterfactual

beliefs on utility) is satisfied for the stated distribution of valuations and corresponding

strategies.

Theorem 5. Under the assumptions used for the dependent valuations result in Theorem 1, As-

sumption II of Theorem 4 is satisfied and there is at least one specification of Υi(·) that satis-

fies Assumption III of Theorem 4. Moreover, for i ∈ J , as long as Assumption 7 holds for

finite specifications of ΘLi and ΘUi, for any ϵ > 0, there are such Υi(·) with the further property

that 0 ≤ supai∈Ad
i

(Υi(ai) − ΥLi(ai)) < ϵ and there are such Υi(·) with the further property that

0 ≤ supai∈Ad
i

(ΥUi(ai) − Υi(ai)) < ϵ. Moreover, any distributional property of F (θ) that is preserved

by weakly-increasing component-wise transformations is also a property of the distribution of valuations

(Υ1(A1), Υ2(A2), . . . , ΥN1(AN1)) from Theorem 4.

“Foregone” utility is the difference between the ex interim expected utility actually achieved by a

player, given its strategy and valuation, and the maximal amount of utility it could have achieved. It

takes as given the strategies of the other players, and imposes that players have correct beliefs. In a

Bayesian Nash equilibrium, foregone utility is 0 for all players and all valuations. This bound on

foregone utility involves point identified quantities, so it can be computed by the econometrician, and

is “likely” to be small. This is demonstrated in the numerical illustration in Section 4. It involves

a sequence of terms like EP (xi(ai, A−i)|Ai = ai) − EP (xi(ai, A−i)|Ai = z′
i), which only differ in the

value of the conditioning variable. Due to the inf over z′
i and z′′

i , such terms are “likely” to be small,

when for example z′
i ≈ ai is selected. Under Assumption 1* (Independent valuations), actions are

independent across players, in which case the expression in the bound would be 0, basically recovering

the result of Theorem 2.

For the same reasons as discussed previously, this result does not meaningfully bound the foregone

utility associated with a player with valuation Υi(ai) when ai is either the smallest used action or
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largest used action, since the inner inf would be over an empty set in that case. However, the upper

bound on foregone utility in Theorem 4 is not necessarily the “best possible” upper bound. For

example, in many games, including most auctions, the “best possible” utility a player with valuation

vi can achieve is vi (i.e., when it cannot do better in the game than getting the object “for free”),

and the “worst possible” utility a player with valuation vi can achieve when it uses the action ai is

−ai (i.e., when it gets 0 allocation of the object, and fully “transfers” its action). Therefore, in such

games, a player that has valuation vi and uses action ai foregoes no more than vi + ai. Although that

is generally a poor upper bound, it does improve upon the upper bound being ∞ in the previously

mentioned cases. That upper bound is “more informative” in particular for players with low valuations

that use low bids. Such arguments can be used to improve the upper bound on foregone utility. That

would help to show that the identified set is “nearly sharp” per the overall idea of this section.

The last part of Theorem 5 implies, for example, that affiliation of F (θ) implies affiliation of

the displayed distribution of valuations from the identified set since affiliation is preserved under

monotone mappings, even without using the assumption of affiliation in the identification analysis.

Assumption 8 (Known bounds on actions) plays a role in Theorem 4(c), to establish that Assump-

tion 6 (Monotone effect of counterfactual beliefs on utility) is satisfied via Lemma 1. For example, in

a first-price auction, this can be used to eliminate “pathological” strategies where some players bid

above their valuations, knowing they will lose for sure. Such strategies could violate Assumption 6.

If the definition of “nearly sharp” ignores establishing Assumption 6, this is irrelevant.

3.8. Results with a continuous part of the action space, or increasing number of actions.

Consider the limit as zi → ai, z′
i ↑ ai, z′′

i ↓ ai in the right sides of Equations 3 to 6. This limit can

arise when the action space has a continuous part, and the action ai is in the interior of the action

space. Also, this limit can approximate a (heuristic) limit when the number of actions increases to

the limit of a continuous/interval action space, with the caveat that the game itself changes when

the action space changes, so such a limit cannot be taken literally without a careful analysis of how

the game changes. A formal point identification result with an interval action space is provided in

Appendix A.

A sketch of the intuition for how point identification arises in the limit goes as follows. Note that

EP (ti(ai,A−i)|Ai=z′
i)−EP (ti(zi,A−i)|Ai=z′′

i )
EP (xi(ai,A−i)|Ai=z′

i
)−EP (xi(zi,A−i)|Ai=z′′

i
)

z′
i↑ai, z′′

i ↓ai−→
EP (ti(ai,A−i)|Ai=ai)−EP (ti(zi,A−i)|Ai=ai)

ai−zi
EP (xi(ai,A−i)|Ai=ai)−EP (xi(zi,A−i)|Ai=ai)

ai−zi

zi→ai−→

∂EP (ti(zi,A−i)|Ai=ai)
∂zi

∣∣∣
zi=ai

∂EP (xi(zi,A−i)|Ai=ai)
∂zi

∣∣∣
zi=ai

.
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The first limit requires continuity of the conditional expectations as a function of the condition-

ing variable, so that EP (ti(ai, A−i)|Ai = z′
i) → EP (ti(ai, A−i)|Ai = ai) and EP (xi(ai, A−i)|Ai =

z′
i) → EP (xi(ai, A−i)|Ai = ai) as z′

i ↑ ai and EP (ti(zi, A−i)|Ai = z′′
i ) → EP (ti(zi, A−i)|Ai = ai)

and EP (xi(zi, A−i)|Ai = z′′
i ) → EP (xi(zi, A−i)|Ai = ai) as z′′

i ↓ ai, where the third and fourth

limits must hold uniformly over zi since zi is part of the limiting sequence.15 The second limit is

an application of the definition of the derivative, and requires that the derivatives exist and that
∂EP (xi(zi,A−i)|Ai=ai)

∂zi

∣∣∣
zi=ai

̸= 0. In that case, the valuation θi corresponding to action ai is bounded

above and below by, and thus must equal,
∂EP (ti(zi,A−i)|Ai=ai)

∂zi

∣∣∣
zi=ai

∂EP (xi(zi,A−i)|Ai=ai)
∂zi

∣∣∣
zi=ai

= Ψi(ai).16 In particular, this

suggests that relatively finer discrete action spaces (e.g., auctions that allow bids that are any integer

multiple of one cent compared to any integer multiple of five dollars) can be expected to result

in relatively tighter identification of the distribution of valuations. This is seen in the numerical

illustration in Section 4.

4. Numerical illustration

This section reports three numerical illustrations of the partial identification result (Theorem 1).

The first setting is a sealed-bid first-price auction of a single non-divisible object. The second setting

is a sealed-bid first-price auction of two units of a non-divisible object. The third setting is a contest.

In all cases, both the action space and the distribution of valuations is discrete.
15Continuity of the conditional expectations is related to the condition of no point masses used in Appendix A. Suppose
ai(θi) = a∗

i has the unique solution θ∗
i , so θ∗

i is the unique valuation to use action a∗
i . Then there will be no point

mass at a∗
i in the distribution of Ai. Suppose further that ai(·) is strictly increasing in a neighborhood of θ∗

i , and that
ai(·) is continuous in a neighborhood of θ∗

i . The first condition is slightly stronger than the condition that θ∗
i is the

unique valuation to use action a∗
i , since it could otherwise be that, for example, ai(·) is strictly increasing “below”

θ∗
i , has a jump discontinuity at θ∗

i , and is flat “above” θ∗
i . Since ai(·) is weakly increasing per Assumption 5, ai(·)

is continuous except for a countable set. Then, for example, EP (ti(ai, A−i)|Ai = z′
i) = EP (ti(ai, A−i)|θi = a−1

i (z′
i)).

Supposing that EP (ti(ai, A−i)|θi) = EΠi
(ti(ai, a−i)|θi) is itself continuous as a function of θi, it would follow that

EP (ti(ai, A−i)|Ai = z′
i) → EP (ti(ai, A−i)|Ai = ai) as z′

i → ai and similarly for the other limits of the other conditional
expectations. Otherwise, if there were multiple valuations to use action ai, resulting in a point mass at ai, a “small
change” in conditioning on Ai = ai versus Ai = z′

i could result in a “large change” in the actual expected value, since
it would correspond to a “large change” in the set of θi being equivalently conditioned on.
16This heuristic analysis also implicitly assumes game-structure identification on the right side of Equations 3
to 6. Further, under the condition that ∂EP (xi(zi,A−i)|Ai=ai)

∂zi

∣∣∣
zi=ai

̸= 0, assume that ∂EP (xi(zi,A−i)|Ai=ai)
∂zi

∣∣∣
zi

is

continuous in zi (i.e., continuously differentiable). Consider the case that ∂EP (xi(zi,A−i)|Ai=ai)
∂zi

∣∣∣
zi

> 0 on an interval

neighborhood of ai. The case that ∂EP (xi(zi,A−i)|Ai=ai)
∂zi

∣∣∣
zi

< 0 on an interval neighborhood of ai would be similar,
though it seems inconsistent with Assumption 5. Then EP (xi(zi, A−i)|Ai = ai) would be strictly increasing at
zi = ai, and hence (when z′

i ≈ ai ≈ z′′
i ), zi < ai would generally satisfy the condition that EP (xi(ai, A−i)|Ai =

z′
i) − EP (xi(zi, A−i)|Ai = z′′

i ) > 0 in the right side of Equation 3 and zi > ai would generally satisfy the condition
that EP (xi(ai, A−i)|Ai = z′

i) − EP (xi(zi, A−i)|Ai = z′′
i ) < 0 in the right side of Equation 5.



40 BRENDAN KLINE

Because the identification result applies to the class of allocation-transfer game, without using

details of any specific game, there is essentially no difference in the mechanical details of applying the

identification result to these games. Really, the only difference is the numerical value of the identified

bounds (holding fixed the true distribution of valuations). As such, there is a detailed discussion of

the auction example, which directly applies also to the contest example.

4.1. Auction. The action space Ai is a discrete evenly-spaced grid between 0 and 1, for varying

numbers of grid points. It is without loss of generality for bids to be restricted to be between 0 and

1, since valuations also have this restriction, as described in the next parts of the setup. (This also

uses the obvious fact that a bidder will never bid above its valuation.) This discreteness corresponds

to the issue of a real-world auction that requires that bids are a multiple of some increment, and

precludes the use of identification strategies based on derivatives.

There are 10 bidders in each auction, who have correlated valuations. Specifically, in each auction,

there is a shared realization of η ∼ U [0.25, 0.75] and private realizations of τi ∼ U [−0.25, 0.25], with

θ̃i = τi + η. This structure induces correlation among the valuations across bidders within an auction.

Then, actual valuations are a discretized version of θ̃i, with 50 possible values.17 This highlights the

fact that the identification result accommodates discrete distributions of valuations. Without the

discretization, this specification of valuations was previously used in Li et al. (2002).

This numerical simulation does require generating the data (unlike in a “real” application of the

identification result to pre-existing data), and thus requires computing the Bayesian Nash equilibrium.

Details of the computation of the Bayesian Nash equilibrium are provided in Remark 8.

The action space and the valuations can be scaled by the same positive constant without changing

the fundamentals of the strategic situation. Thus, the action space can be given multiple equivalent

concrete interpretations. For example, by scaling everything by 5, an action space with 6 grid points

(0, 0.2, 0.4, 0.6, 0.8 and 1) can be interpreted as bids that must be in whole dollars, for an object that

is valued at most 5 dollars. By scaling by 50, the same action space can equivalently be interpreted

as bids that must be a scalar multiple of 10 dollars, for an object that is valued at most 50 dollars.
17The discretization begins by choosing 51 evenly spaced grid points between 0 and 1, namely 0, 0.02, 0.04, and so
forth. For each such grid point, the corresponding quantile of the distribution of θ̃i is computed. This results in 50
bins of valuations. Each bin of valuations is assigned a “discretized” value that is the quantile in between the end
point quantiles. For the b-th bin, which ranges from the 0.02 × (b − 1) quantile to the 0.02 × b quantile, the assigned
value is the 0.02 × (b − 1) + 0.01 quantile. Then a value of θ̃i is discretized by determining which bin it is contained
within, and assigned the corresponding “discretized” value.
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Assumptions 1 (Dependent valuations) and 2 (Action space is ordered) are satisfied trivially, given

the setup. Except for a particular alternative analysis in Figure 2c, Assumption 1* (Independent

valuations) is not used since this is the dependent valuations case. Assumptions 3 (Optimal strategy

is used), 4 (Correct beliefs), and 5 (Weakly increasing strategy is used) are the consequence of the

use of the monotone Bayesian Nash equilibrium of this setup. The actual computation of such is

detailed in Remark 8. Assumption 6 (Monotone effect of counterfactual beliefs on utility) follows

from Lemma 1, using the previous arguments for first-price auctions.

The identification result uses Assumption 7 (Known bounds on valuations), imposing ex ante

knowledge that valuations are non-negative and that valuations are necessarily no more than 100.

This upper bound is much larger than the true upper bound of 1. The specific assumption of 100 has

no practical effect (as compared to any other large number) over the displayed range of valuations on

the horizontal axis in Figure 1. The identification result also uses Assumption 8 (Known bounds on

actions) to impose that bids do not exceed valuation.

Each panel in Figure 1 displays the identified bounds for the indicated number of actions. More

specifically, each panel concerns the marginal distribution of valuations for any particular bidder (all

of whom share the same marginal distribution of valuations, given the setup). The identification

result in Theorem 1 also provides identified bounds for the joint distribution of valuations, but this is

not possible to display visually. However, it is used in a numerical result later in this section. In each

panel in Figure 1, the blue plot is the true cumulative distribution of valuations. The green plot with

small “down arrows” is the lower bound for the cumulative distribution of valuations, assuming the

econometrician has ex ante knowledge of the allocation and transfer rule. The magenta plot with

small “up arrows” is the upper bound for the cumulative distribution of valuations, assuming the

econometrician has ex ante knowledge of the allocation and transfer rule. Given the discreteness in

the setup, all of these are actually discontinuous step functions. Each plot also visually includes a

series of dashed vertical lines, connecting the different steps. This is only for visual clarity.

Also shown are the lower bound (in orange) and upper bound (in red), using only the identification

of the allocation rule and transfer rule following Lemma 2. As expected from Remark 5, the bounds

assuming ex ante knowledge and the bounds without any ex ante knowledge are mostly the same.

The only non-zero differences in Figure 1 appear at the right of the figures, for the upper bound.
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(a) 6 actions
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(b) 11 actions
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(c) 21 actions
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(d) 26 actions

Figure 1. Bounds on distribution of valuations, auction.

Thus, in fact, the “orange” lower bound is not visible, since it is the same as the “green” lower bound.

By construction, whenever the bounds differ, the bounds without ex ante knowledge are wider.

As expected, the true distribution of valuations is between the lower bound and the upper bound.

It is possible to use the identified bounds to bound other quantities related to the distribution

of valuations. One interesting quantity is the median of the distribution of valuations. Using the

bounds from the model with 26 actions, using the bounds with ex ante knowledge of the rules, the

median of the distribution of valuations is bounded between approximately 0.44 and 0.59. The true

median is 0.5. Another interesting quantity is the median of the distribution of the maximum of

valuations within each group of 10 bidders. This uses the bounds on the entire joint distribution of

valuations, rather than just the bounds on the marginal distribution of valuations. The maximum

valuation among the bidders is relevant because it is the transfer the auctioneer would get if the
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bidder who most valued the object paid its valuation. Equivalently, assuming that the auctioneer has

no value for the object, and values the units of the transfers the same way that the bidders do, it is

the total welfare in the case that the object is allocated efficiently. Using the bounds from the model

with 26 actions, the median of this distribution is bounded between approximately 0.64 and 0.92.

The true median of this distribution is approximately 0.71.

In Figure 1a, there are only 6 actions in the action space, and the bounds on the distribution of

valuations are relatively wide. With 11 actions in Figure 1b or 21 actions in Figure 1c or 26 actions

in Figure 1d, the bounds become increasingly tight. The bounds become much tighter between 6

actions and 11 actions, as compared to between 21 actions and 26 actions. Suppose the maximum

possible valuation is interpreted to be 1 dollar. With 6 actions, the difference between the actions is

20 cents (without any scaling). With 11 actions, the difference between the actions is 10 cents. Thus,

the gap between the actions halves. On the other hand, with 21 actions, the difference between the

actions is 5 cents. And with 26 actions, the difference between the actions is 4 cents, which is not

much different from the case of 21 actions.

In each panel of Figure 1, the upper bound (the magenta plot with “up arrows”) never attains the

value of 1 over the displayed range of valuations. If the displayed range of valuations were extended

all the way to 100 (thereby completely obscuring what happens over the “interesting” range that

is displayed), it would be seen that the upper bound does eventually attain the value of 1. This is

a direct consequence of the identification strategy, as follows. In Theorem 1, the upper bound for

the valuation consistent with using the largest action that is used is the ex ante upper bound on

valuations.18 This is because, considering the specification of Φ(1)
Ui (ai) in Equation 5, there cannot

be z′′
i ∈ Ri with ai < z′′

i , when ai is the largest action that is used. Thus, any probability mass on

the largest action that is used translates to an upper bound that is the ex ante upper bound on

valuations. Similarly, the lower bound for the valuation consistent with using the smallest action that

is used is the maximum of the ex ante lower bound on valuations and a−1
Ui (·) evaluated at that action.

Based on Theorem 4, in the model with 26 actions, using the bounds with ex ante knowledge

of the rules, and for the distribution of valuations that is the midpoint between the upper bound

and lower bound, approximately 92% of the distribution of valuations of player i (for any i, given

symmetry) can be given a non-trivial bound on the “foregone” utility. Among those valuations, the
18Recall, the upper bound is the minimum of the ex ante upper bound on valuations and a−1

Li (·) evaluated at that
action. In this particular case, the upper bound is not impacted by Assumption 8, as previously discussed.
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average corresponding upper bound on the “foregone” utility is approximately 0.01. When there are

only 6 actions, those two numbers are approximately 86% and 0.05, respectively. Consistent with the

discussion of Theorem 4, this illustrates that the identified bounds can be expected to “get sharper”

with more actions, with the limiting result of point identification in Theorem 6.
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(a) Baseline
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(b) 10 grid points in distribution of valuations
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(c) Independent valuations
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(d) Discrete log-normal valuations

Figure 2. Bounds on distribution of valuations, auction. Alternative setups.

Figure 2 shows the bounds for a few alternative specifications, changing one aspect per panel. The

main message is that the identified bounds remain “reasonable” across a variety of setups. Unless it

is the aspect changed, each panel concerns the same distribution of valuations as described above,

with 50 discrete grid points, and 11 actions. This baseline case is Figure 2a, which just repeats

Figure 1b for visual reference. Figure 2b shows the results with fewer grid points in the distribution

of valuations. Figure 2c shows the results for the case of independent valuations, where each bidder

has an independent draw from the same marginal distribution of valuations (basically, each bidder
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now gets its own independent value of η). Figure 2d shows the results for the case of discretized

log-normal distribution of valuations, where underlying multivariate normal random variables with

0.25 variances and covariances 0.025 are drawn and exponentiated, and then scaled by 1
2 in order to

generally fall in the unit interval.

4.2. Auction with two objects. The second numerical illustration concerns a first-price auction

with two objects, rather than just one object. This changes both the allocation rule and the transfer

rule, since now the allocation rule gives the two highest bidders one unit of the object each (and

randomly assigns in cases of ties, making sure that any bidders with higher bids are allocated any

available units before bidders with lower bids).19 Correspondingly, the transfer rule accounts for the

new rule describing when a bidder wins a unit of the object, and thus pays its bid. Because different

winners can potentially pay different prices, this is a discriminatory auction. The distribution of

valuations and the action space is the same as in the previous auction illustration. The panels in

Figure 3 emulate those in Figure 1. The bounds are basically identical to those in Figure 1. Thus,

it seems that multiple units has minimal impact on the “informativeness” of the data about the

distribution of valuations. This shows that the identification strategy easily accommodates situations

with multiple units.

4.3. Contest. The third numerical illustration concerns a contest. Compared to the auction illus-

tration, the difference is that now the allocation rule is the “lottery” specification of the contest

success function from Example 1. Thus, the probability that a player wins the contest is equal

to that player’s relative proportion of the total efforts of all players. This is an example where it

is particularly useful that the identification strategy allows the econometrician to use the data to

identify the allocation rule, rather than require it be known ex ante, since perhaps other contest

success functions are also plausible. (This would depend on what institutional knowledge exists in a

given empirical application.) The distribution of valuations and the action space is the same as in

the auction illustration. The transfer rule is that the “winner” of the contest pays its “effort.” The

panels in Figure 4 emulate those in Figure 1, except based on this contest game. The bounds are

noticeably wider compared to those in Figure 1. Thus, it seems these contests are “less informative”

about the distribution of valuations.
19For example, if the highest three bids are 1, 0.9, and 0.9, the bidder who bids 1 gets a unit for sure, and the other
two bidders get a unit with probability 0.5.
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(a) 6 actions
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(b) 11 actions
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(c) 21 actions
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(d) 26 actions

Figure 3. Bounds on distribution of valuations, auction with two objects.

Remark 8 (Computation of the BNE). The identification result takes the data as given from a

monotone Bayesian Nash equilibrium (or a relaxation per Remark 2), and does not require the

computation of the equilibrium. On the other hand, this numerical simulation must construct the

Bayesian Nash equilibrium, in order to generate the data to apply to the identification result. The

monotone Bayesian Nash equilibrium is found by numerically iterating on a sequence of best responses.

This is closely related to best reply dynamics and fictitious play (e.g., see related ideas summarized in

Fudenberg and Levine (1998, 2009)). In general, computing a Bayesian Nash equilibrium is known to

be quite difficult (e.g., Cai and Papadimitriou (2014)). But, for the purposes of this paper, it is enough

that this algorithm converges (to a Bayesian Nash equilibrium) in the particular games relevant here.

Overall, the computation starts by constructing a large (but computationally tractable) number of

draws from the distribution of valuations F (θ). This is the basis for computational approximations
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(a) 6 actions
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(b) 11 actions
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(c) 21 actions
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(d) 26 actions

Figure 4. Bounds on distribution of valuations, contest.

to all of the quantities based on that distribution. The iterative process starts at some initial strategy

s1. At step j, the strategy sj is “conjectured” to be used by players 2+, and the best response s̃j+1

(for each valuation) of player 1 is computed. Then, a new strategy ˜̃sj+1 = rjsj−h:j + (1 − rj)s̃j+1 is

computed, where rj is a vector of weights and sj−h:j is the equally weighted average of sj−h through

sj (for some length of history h, truncated in the obvious way for the first few iterations). Thus, ˜̃sj+1

is a convex combination of corresponding elements of sj−h:j and s̃j+1. (At some level, it would be

“reasonable” to set ˜̃sj+1 = s̃j+1, but this seems to have inferior performance, since it “overreacts.”)

Finally, sj+1(θ∗) = maxθ≤θ∗ ˜̃sj+1(θ). Thus, sj+1(θ∗) is a weakly monotonic “version” of ˜̃sj+1. Then,

sj+1 is “conjectured” to be used by players 2+, and the iterative process repeats. Allowing for a

small numerical tolerance owing in particular to the numerical approximation to the distribution of
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valuations, it is computational trivially to check whether a candidate strategy that results from this

process is a Bayesian Nash equilibrium.

5. Conclusions

This paper develops identification results for the distribution of valuations in a class of allocation-

transfer games that determine an allocation of units of a valuable object and arrangement of monetary

transfers on the basis of the actions taken by the players. The identification results are constructive and

are based on the assumption of the use of monotone strategies. The results allow dependent valuations,

discrete parts of the action space, non-differentiability, and unknown (to the econometrician) details

of how the allocations and transfers are determined.

A. Point identification in the limit

As noted in Section 3.8, the partial identification result “limits” to point identification under

certain conditions. This section formalizes that result.

Assumption 9 (Continuous action space and no point masses in distribution of actions). For each

i ∈ J , Ai = [αi, βi] and there are no point masses in the observed distribution of actions of player i.

Compared to Assumption 2 (Action space is ordered), Assumption 9 rules out discrete actions.

Assumption 10 (Smooth distribution of valuations). The distribution F (·) has associated ordinary

density f(·). For each i ∈ J , the support of the distribution of θi is an interval.

Under Assumptions 1 (Dependent valuations), 5 (Weakly increasing strategy is used), and 10

(Smooth distribution of valuations), lack of point masses from Assumption 9 (Continuous action

space and no point masses in distribution of actions) is equivalent to the condition that the strategy

is strictly increasing.20

Assumption 11 (Differentiable ex interim expected allocation and expected transfer). For each

i ∈ J , there is a set Ei,d with P (Ai ∈ Ei,d) = 0 such that for each possible valuation θi, the expected
20If two valuations use the same action, then there is a point mass at that action because the entire interval connecting
those valuations would also use that same action. So, if there are no point masses, then no two valuations use the same
action, so the strategy must indeed be strictly increasing. Conversely, obviously if the strategy is strictly increasing,
then there are no point masses in the distribution of actions by Assumptions 1 and 10. This conclusion is not true
without Assumption 5, since if ai(·) were non-monotone, then the set {θi : ai(θi) = a∗

i } can be non-singleton, but not
necessarily of positive probability under the distribution of θi. Therefore, if the strategy were non-monotone, then
multiple valuations could use the same action a∗

i even though there is no mass point at a∗
i .
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allocation EΠi
(xi(ai, a−i)|θi) and the expected transfer EΠi

(ti(ai, a−i)|θi) are differentiable functions

of ai, evaluated at any a∗
i ∈ support(ai(θi)) ∩ EC

i,d.

The notation SC for some set S is the complement of the set S. Assumption 11 requires that ex

interim expected allocation and ex interim expected transfer given valuation θi are differentiable on

the support of the strategy ai(θi). Intuitively, this corresponds to the existence of the derivatives

used in the heuristic argument in Section 3.8. Under Assumption 5 (Weakly increasing strategy is

used), ai(θi) is a degenerate random variable (i.e., a pure strategy). However, under Assumption 3

(Optimal strategy is used) alone, mixed strategies are allowed. As mentioned above, breaking

up the assumptions in this way makes it easier to refer to the separate roles of the assumptions.

Assumption 11 allows a probability zero exceptional set of actions at which differentiability fails.

Let

Ψx
i (z) ≡ ∂EP (xi(ai, A−i)|Ai = z)

∂ai

∣∣∣∣∣
ai=z

and Ψt
i(z) ≡ ∂EP (ti(ai, A−i)|Ai = z)

∂ai

∣∣∣∣∣
ai=z

(23)

and let

(24) Ψi(z) ≡ Ψt
i(z)

Ψx
i (z) .

The proof of Theorem 6 shows that Ψx
i (ai) and Ψt

i(ai) actually do exist for ai ∈ Ad
i ∩ EC

i,d.

Definition 3 (Game-structure identification of derivatives). An action ai is an action with game-

structure identification of derivatives if Ψx
i (ai) and Ψt

i(ai) can be identified to exist, and Ψx
i (ai) and

Ψt
i(ai) are point identified quantities. Per convention, identification of derivatives on the boundary of

Ai is understood to concern identification of the corresponding one-sided derivative.

Assumption 12 (Game-structure identification of derivatives). For each i ∈ J , there is a set Ei,r

with P (Ai ∈ Ei,r) = 0 such that if ai ∈ Ad
i ∩ EC

i,r is such that Ψx
i (ai) and Ψt

i(ai) exist then ai is an

action with game-structure identification of derivatives per Definition 3.

Assumption 12 requires game-structure identification of derivatives for all actions used in the data

except for the probability zero exceptional set Ei,r. This accommodates the possibility that game-

structure identification of derivatives may fail on a set of probability zero. Similar to game-structure

identification of differences from Definition 2, game-structure identification of derivatives follows
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from standard conditions on identification/estimation of derivatives of conditional expectations. See

Lemma 3 for details.

Assumption 13 (Non-zero marginal expected allocation). For each i ∈ J , there is a set Ei,m with

P (Ai ∈ Ei,m) = 0 such that Ψx
i (ai) ̸= 0 for ai ∈ Ad

i ∩ EC
i,m.

Assumption 13 allows a probability zero exceptional set Ei,m.

Theorem 6. Under Assumptions 1 (Dependent valuations), 2 (Action space is ordered), 3 (Optimal

strategy is used), 4 (Correct beliefs), 5 (Weakly increasing strategy is used), 9 (Continuous action

space and no point masses in distribution of actions), 10 (Smooth distribution of valuations), 11

(Differentiable ex interim expected allocation and expected transfer), 12 (Game-structure identifica-

tion of derivatives), and 13 (Non-zero marginal expected allocation), the distribution of valuations

(θ1, θ2, . . . , θN1) is point identified, and the identification is constructive, because the distribution of

(θ1, θ2, . . . , θN1) equals the distribution of (Ψ1(A1), Ψ2(A2), . . . , ΨN1(AN1)), where (A1, A2, . . . , AN1) is

distributed according to the data P (A, X, T ) and Ψi(·) is the identifiable function given in Equation 24.

Independent valuations. With independent valuations: replace Assumption 1 (Dependent valua-

tions) with Assumption 1* (Independent valuations) and replace the Ψ functions with the Λ functions

defined in Equation 26.

Let

Λx
i (z) ≡ ∂EP (xi(ai, A−i))

∂ai

∣∣∣∣∣
ai=z

and Λt
i(z) ≡ ∂EP (ti(ai, A−i))

∂ai

∣∣∣∣∣
ai=z

.(25)

Also, let

(26) Λi(z) ≡ Λt
i(z)

Λx
i (z) .

Then,

Λx
i (z) = ∂EP (Xi|Ai = ai)

∂ai

∣∣∣∣∣
ai=z

and Λt
i(z) = ∂EP (Ti|Ai = ai)

∂ai

∣∣∣∣∣
ai=z

.(27)

Under Assumption 1* (Independent valuations), the econometrician can point identify Λx
i (·) and

Λt
i(·) using the expressions in Equation 27. ⋆
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The following provides one sufficient condition for game-structure identification of derivatives,

formalizing the idea that it follows from standard results on identification and estimation of conditional

expectations.

Lemma 3 (Sufficient conditions for game-structure identification of derivatives). Suppose that

Assumptions 1 (Dependent valuations) and 9 (Continuous action space and no point masses in

distribution of actions) are satisfied. Let an action ai ∈ Ai be given, for some i ∈ J . Suppose ai ∈ Ad
i ,

and suppose there is a set S containing ai such that Ad
i ∩ S is a non-degenerate interval and such that

EP (Xi|Ai = a′
i, A−i = a−i) and EP (Ti|Ai = a′

i, A−i = a−i) are point identified for all a′
i ∈ Ad

i ∩ S and

a−i ∈ Ãd
−i(a′

i), where Ãd
−i(a′

i) has probability 1 according to the distribution A−i|(Ai = ai). Suppose

A−i|(Ai = ai) is point identified. Suppose: If ai ∈ int(Ai), then ai ∈ int(Ad
i ∩ S). Suppose the

data is P (A, X, T ). Then, whether or not Ψx
i (ai) and Ψt

i(ai) exist is point identified. Exists means,

by definition, that the limit corresponding to the definition of the derivative exists. Moreover, if

Ψx
i (ai) and Ψt

i(ai) exist, then there is game-structure identification of derivatives per Definition 3.

Identification of Ψx
i (ai) and Ψt

i(ai) is constructive, and given by the existence and values of the limits

corresponding to expressions in Equation 28:

Ψx
i (z) = ∂EP (EP (Xi|Ai = ai, A−i)|Ai = z)

∂ai

∣∣∣∣
ai=z

and Ψt
i(z) = ∂EP (EP (Ti|Ai = ai, A−i)|Ai = z)

∂ai

∣∣∣∣
ai=z

(28)

B. Examples of games

The class of allocation-transfer games studied in this paper is illustrated via examples.

Example 1 (Contests, continuing from p. 19). In contest models, the actions are interpreted as

“costly effort” toward winning a valuable object. The economic theory of such models has been

developed in, for example, Hillman and Riley (1989), Baye et al. (1993), Amann and Leininger (1996),

Krishna and Morgan (1997), Lizzeri and Persico (2000), and Parreiras and Rubinchik (2010), in

addition to an overall large literature. See for example Konrad (2007, 2009) for a summary of the

literature, including discussion of theoretical applications to a broad range of instances of competition,

including advertising, litigation, political lobbying, research and development, and sports. Wasser

(2013), Ewerhart (2014), Bodoh-Creed and Hickman (2018), and Prokopovych and Yannelis (2023)

establish conditions for a monotone equilibrium.
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The valuation θi is the value that player i has for the object. Often, the “efforts” are equivalent

to financial expenditures, so that Ai = [0, ∞) and the transfer rule is ti(a) = ai. However, other

transfer rules are also possible. For example, it might be that part of the effort is “refundable,” so

that players only expend some fraction of their effort, possibly depending on whether the player wins

or loses (e.g., see the models in Riley and Samuelson (1981) and Matros and Armanios (2009)). The

allocation rule x(a) = (x1(a), x2(a), . . . , xN (a)) is known as the “contest success function” that relates

the actions taken by the players to the probabilities that each of the players wins the valuable object.

The econometrician may not know the contest success functions x(·), and indeed the economic theory

literature has explored a variety of different contest success functions. See for example Corchón

and Dahm (2010) for a detailed discussion. For example, following Tullock (1980)-style models,

xi(a) =


ar

i∑N

j=1 ar
j

if a ̸= 0

1
N

if a = 0
for some r > 0. In particular, the case of r = 1 has been interpreted as a

“lottery” in which the probability that player i wins is equal to player i’s share of the overall aggregate

effort. The specification states that if all players expend no effort, then each player has equal chance

of winning the contest. More generally, there can be functions fi(·) such that xi(a) = fi(ai)∑N

j=1 fj(aj)
,

including the logistic specification fi(z) = ekz as in Hirshleifer (1989). Alternatively, following Lazear

and Rosen (1981)- and Dixit (1987)-style models, xi(a) = Pϵ(ai + ϵi > maxj ̸=i(aj + ϵj)), where Pϵ

is the distribution of “noise” or “randomness” involved in determining the contest winner. The

identification results do not require the econometrician to know x(·) (or the underlying distribution

x̃(·)). In particular, the econometrician might not know r or fi or Pϵ.

In the above specifications, generally a player that expends the most effort is most likely to win,

but is not guaranteed to win. In the limiting case of the “all-pay auction” formulation,

xi(a) =



1 if i expends the most effort

pi(a) if i ties for expending the most effort with at least one other player

0 if i does not expend the most effort,

where pi(a) reflects the tie-breaking rule. In all-pay auction models, the player that expends the most

effort is guaranteed to win.

Example 2 (Auctions, continuing from p. 9). Auction models can involve various complications like

“participation costs,” reserve prices, asymmetries, and/or multiple units possibly with endogenous
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supply. The economic theory of auctions has been reviewed, for example, in Klemperer (1999, 2004),

Milgrom (2004), Menezes and Monteiro (2005), and Krishna (2009). Specifically the economic theory

of auctions with a discrete action space has been developed in Chwe (1989), Rothkopf and Harstad

(1994), Dekel and Wolinsky (2003), David et al. (2007). One feature of the auction theory literature is

the range of auction formats, implying a range of allocation and transfer rules. Much of the economic

theory literature has focused on establishing monotonicity of the strategy in auction models, and

moreover the literature on general conditions for monotone equilibrium in games often treats auctions

as a leading example of their results.

The valuation θi is the value player i has for a unit of the object being auctioned. The specific

auction format would be reflected in the allocation rule x(·) and transfer rule t(·), and the identification

strategy can apply to a wide range of auction formats.

Let Hi(a) = maxj ̸=i and j s.t. aj≥rj
aj be the highest bid other than the bid of player i, among the

bids from players that exceed the corresponding reserve price, where ri ≥ 0 is the reserve price for

player i.

Also let S(a) be the quantity allocated to the winning bidder as a function of the profile of bids

(e.g., Milgrom (2004, Section 4.3.3)). For example, the supply S(a) might depend only on the winning

bid, as in a “supply curve” at the “price” of the winning bid. See also Example 3 for related models

where S(a) can be interpreted as a “demand curve.” The standard case that there is one exogenous

unit of the object being auctioned is the special case that S(·) ≡ 1.

The allocation is the awarding of units of the object from the auction. Then, for example, in

auction formats where the highest bidder wins, as long it exceeds its reserve price and the highest

competitor’s bid among those bids exceeding the corresponding reserve price,

xi(a) =



S(a) if ai > Hi(a) and ai ≥ ri

pi(a) if ai = Hi(a) and ai ≥ ri

0 ai < Hi(a) or ai < ri,

where pi(a) ∈ [0, S(a)] reflects the tie-breaking rule, the expected number of units that player i is

allocated when bids are a, involving a tie for high bid.
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The transfers include the payments to the auctioneer, but could include other transfers, like

participation costs21 when applicable. The transfer rule also depends on the auction format. For

example in a first price auction, and noting that ti(a) is the expected transfer that integrates over the

tie-breaking rule,

ti(a) =



aiS(a) if ai > Hi(a) and ai ≥ ri

aipi(a) if ai = Hi(a) and ai ≥ ri

0 ai < Hi(a) or ai < ri

Other auction formats would have different allocation rules and/or transfer rules.

The econometrician may not know xi(a) and/or ti(a), because the econometrician may not know

the “supply function” S(a). The identification results do not require the econometrician to know

xi(a) and/or ti(a).

Because the allocation-transfer game framework does not necessarily require the assumption of

symmetric players, the auction could involve such asymmetries as “strong” and “weak” bidders, as in

Milgrom (2004, Section 4.5). For example, Campo et al. (2003) have focused on establishing point

identifying assumptions for asymmetric bidders with affiliated private values in first price auctions.

Reny and Zamir (2004) have studied the existence of monotone equilibrium in related auction models.

Henderson et al. (2012) and Luo and Wan (2018) explore the impact of monotonicity of the

bidding strategy in specific first-price auction models with independent valuations on the properties

of the estimator (e.g., rate of convergence, optimality, etc.), whereas this paper explores the role of

monotonicity in identification.

Haile and Tamer (2003) study the (partial) identification of bidder valuations that arises when the

econometrician has an incomplete model, specifically in an incomplete model of English auctions with

symmetric independent private values. See also Chesher and Rosen (2017) for further identification

results in a related model, based on generalized instrumental variables. Haile and Tamer (2003)
21A participation cost can be modeled in a few different ways, particularly concerning whether or not the players know
their own valuation at the time they make the participation decision. A third approach allows that bidders observe a
signal of their valuation at the time of their participation decision, an identification problem studied in Gentry and Li
(2014). Other identification results emphasizing entry/participation in particular auction models includes Marmer
et al. (2013) (focusing on identifying the selection effect, and discriminating between models of entry), Fang and Tang
(2014) (focusing on inferring bidder risk attitudes), and Li et al. (2015) (focusing on testable implications of risk
aversion). The economic theory of auctions with participation costs has been developed in, for example, Samuelson
(1985), McAfee and McMillan (1987), Levin and Smith (1994), Tan and Yilankaya (2006), and Cao and Tian (2010).
See for example Krishna (2009, Section 2.5) for equilibrium in auctions with reserve prices.
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studied identification of bidder valuations based on the assumptions that bidders will not be “outbid”

and will not “overbid.”

Another important identification problem, also leading to partial identification, particularly in

certain auction formats, concerns the “missing data” problem when the econometrician does not

observe the bids of all of the players. Aradillas-López et al. (2013) have established partial identification

in the important case of an ascending auction with correlated valuations, focusing on showing partial

identification of economically relevant seller profit and bidder surplus quantities rather than the object

in this paper, the overall joint distribution of valuations. Because the data used by the identification

strategy developed here includes the actions of all players, it cannot be applied to address the

identification problem studied in Aradillas-López et al. (2013). However, the identification strategy

developed here does allow “missing data” on other parts of the game, for example the “participation

cost” in an auction with a participation cost. Similarly, because the identification strategy can apply

to an incomplete specification of the model, the identification results also accommodate “missing ex

ante knowledge,” for example on endogenous quantity functions in an auction. Tang (2011) focuses

on partial identification of auction revenue in first-price auctions with common values, which also is

not addressed by this paper, which assumes private values.

Example 3 (Procurement auctions, reverse auctions, oligopoly models, etc.). Models of procurement

auctions, reverse auctions, and related situations are similar to auctions, with the distinguishing

feature that the N players are bidding to sell units of an object, rather than buy units of an object.

Therefore, the valuation θi can be interpreted to be player i’s (constant) marginal cost of supplying

one unit of the object, and the “low bid” wins the market. Let Li(a) = minj ̸=i and j s.t. aj≤rj
aj be the

lowest bid other than the bid of player i, among the bids from players that are below the corresponding

reserve price. The “allocation” experienced by player i is the quantity of the object that player i

supplies, and therefore the allocation is negative, so the allocation rule could be

xi(a) =



−S(a) if ai < Li(a) and ai ≤ ri

−pi(a) if ai = Li(a) and ai ≤ ri

0 ai > Li(a) or ai > ri,

,

where, similarly to Example 2, S(a) is the endogenous quantity (i.e., “demand”) given the profile of

bids a, ri is the maximum acceptable bid for player i, and pi(a) reflects the tie-breaking rule. The
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“transfer” experienced by player i is the payment to player i. Due to the convention in this paper

that transfers are from the player, transfers are negative. For example, it could be that

ti(a) =



−aiS(a) if ai < Li(a) and ai ≤ ri

−aipi(a) if ai = Li(a) and ai ≤ ri

0 ai > Li(a) or ai > ri

Some models of oligopoly competition are basically the same game, with N firms in an oligopoly

having privately known constant marginal costs of production competing to win the oligopoly market,

see for example Vives (2001, Chapter 8). In these models, the “endogenous quantity” S(a) is

the demand curve, generally depending on the lowest bid (i.e., the “realized price”). As with the

endogenous supply in Example 2, the econometrician may not know the “demand curve” and therefore

not know xi(a) and/or ti(a). The identification results do not require the econometrician to know

xi(a) and/or ti(a).

Example 4 (Partnership dissolution). The economic theory of partnership dissolution has been

developed in Cramton et al. (1987), in addition to a large subsequent literature. There are N

co-owners of an object. Prior to partnership dissolution, player i owns share ri of the object and has

valuation θi for the object. The econometrician need not know these ownership shares.

In the “bidding game” formulation of partnership dissolution developed in Cramton et al. (1987),

there are initial transfers between the co-owners that depend on their ownership shares. Since these

initial transfers do not depend on valuations, they are not revealing of valuations. In the special

case of equal ownership shares, these initial transfers are zero. In any case, the econometrician need

not observe data on these initial transfers in order to apply the identification strategy. Indeed, the

identification strategy does not rely on the game implementing such initial transfers. These initial

transfers are for purposes of satisfying the individual rationality constraint, violation of which does

not change the identification strategy in this paper, since this paper essentially only uses the incentive

compatibility constraint. See formula C of Cramton et al. (1987, Theorem 2). Then, each co-owner

bids for ownership, so the action in the game are bids, with the highest bidder winning ownership.

The transfer from player i is (omitting the “lump sum” initial transfer reflecting ownership shares

but not valuations) ti(a) = ai − 1
N−1

∑N
j ̸=i aj, so player i transfers its bid even if it loses, and is

“compensated” by the bids of the other players.
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Example 5 (Public good provision). In models of the provision of public goods or public projects,

the distinguishing feature is that the allocation is the same to all players, reflecting the “public”

nature of the object. The valuation θi reflects the private value that player i places on the public

good. The economic theory of such models has been developed in Bergstrom et al. (1986), Bagnoli

and Lipman (1989), Mailath and Postlewaite (1990), Alboth et al. (2001), Menezes et al. (2001),

and Laussel and Palfrey (2003), in addition to a large overall literature, summarized for example

in Ledyard (2006). See Lemma 1 or the discussion of “regular” equilibrium in Laussel and Palfrey

(2003) for the role of monotonicity in the strategies. Or see the characterization of the equilibrium

strategies in Menezes et al. (2001). In direct revelation games (e.g., Clarke (1971)-Groves (1973)

games), players report their valuation, in which case the identification problem is trivial. However, in

other games, the actions of the players are interpreted as contributions to the public good, and the

object is allocated (e.g., the public project is completed) if and only if the sum of the contributions

of the players is greater than the cost of producing the public good. The contributions may or may

not be refunded if the public good is not produced, depending on the specific game. See for example

Menezes et al. (2001). Some models of public good provision, along the lines of Palfrey and Rosenthal

(1984) (who worked with complete information), involve a discrete and even binary action space

(contribute an ex ante fixed amount or not).

Example 6 (Strategic (non-“price taking”) market behavior). Models of strategic (non-“price taking”)

market behavior, specifically models based on multilateral double auctions, involve Ns sellers (i.e.,

players that currently each own a unit of the object) and Nb buyers (i.e., players that potentially would

each like to buy a unit of the object). The buyers and sellers interact in order to trade units of the

object in exchange for monetary payments. The economic theory of such models has been developed in

Chatterjee and Samuelson (1983), Myerson and Satterthwaite (1983), and Wilson (1985), in addition

to a huge subsequent literature. See Fudenberg et al. (2007), Kadan (2007), or Araujo and de Castro

(2009) for recent results. See Bolton and Dewatripont (2005, Chapter 7) for a textbook treatment.

For monotonicity in the equilibrium strategies, see e.g., Chatterjee and Samuelson (1983, Theorem 1)

and Satterthwaite and Williams (1989a, Definition of “regular” equilibrium) and Fudenberg et al.

(2007, Theorem 1). The case of Ns = 1 = Nb has seen particular attention, as models of bilateral
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trade.22 The case of Ns > 1 and Nb > 1 has also seen particular attention, as “strategic” versions

of supply and demand models, in which individual market participants do not act as competitive

price takers. Although the theory literature has tended to treat these two cases separately, the

identification strategy can accommodate both cases.

The valuation of player i for a unit of the object is the private information θi. The buyers announce

“bid prices” and the sellers announce “ask prices” and trade proceeds. Suppose that a(Ns) is the Ns-th

highest announcement and a(Ns+1) is the Ns + 1-st highest announcement, both among the combined

set of announcements (i.e., bids and asks) from buyers and sellers. Let z(a) = ka(Ns) + (1 − k)a(Ns+1)

be the resulting transaction price, where k ∈ [0, 1] is a parameter of the model that might either be

known or unknown by the econometrician (an example of a possibly incomplete specification of the

model of the game). Then one possible allocation rule and transfer rule is

xi(a) =



1 if ai > z(a)

pi(a) if ai = z(a)

0 if ai < z(a)

and ti(a) =



z(a) if i is a buyer and ai > z(a)

−z(a) if i is a seller and ai < z(a)

pi(a)z(a) if i is a buyer and ai = z(a)

−(1 − pi(a))z(a) if i is a seller and ai = z(a)

0 otherwise,

where pi(a) reflects a tie-breaking rule with the condition that ∑N
i=1 xi(a) = Ns for all a. In particular,

in the case of a(Ns) > a(Ns+1), the tie-breaking rule is such that pi(a) = 1 when ai = z(a) and k = 1

and pi(a) = 0 when ai = z(a) and k = 0. Therefore, ignoring ties by considering the situation that

a(Ns) > a(Ns+1), and because a(Ns) ≥ z(a) ≥ a(Ns+1) with at least one inequality strict, the players

with the Ns highest announcements, among both buyers and sellers, are allocated a unit of the object.

The transaction price is z(a), and buyers that are allocated a unit of the object pay z(a) and sellers

that are not allocated a unit of the object receive z(a). See for example Fudenberg et al. (2007) for

more details. These allocation and transfer rules might be unknown by the econometrician, if the

econometrician does not know k, in which case the identification strategy involves identifying the

allocation and transfer rules directly from the data.
22There are a variety of different “bilateral trade” or “bargaining” models, not all of which proceed in the same way.
For example, Merlo and Tang (2012) study identification of a different bargaining model that evidently does not fit
this allocation-transfer game framework.
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The main assumption of the identification strategy is that the players use monotone strategies. For

buyers, this requires that buyers announce that they are willing to pay relatively more for a unit of

the object when their valuation for a unit of the object is relatively higher. For sellers, this requires

that sellers announce that they require a relatively higher payment for a unit of the object when their

valuation for a unit of the object is relatively higher. Further, equilibrium strategies can be difficult

to characterize (e.g., Leininger et al. (1989) and Satterthwaite and Williams (1989a)), making it

useful that assuming a property of the equilibrium is sufficient for the identification strategy, without

needing to explicitly characterize the equilibrium solution. For example, in one particular case (with

k = 0 and other assumptions), Satterthwaite and Williams (1989b) show that the equilibrium strategy

for the buyers is the solution to a differential equation involving a combinatorial expression involving

the unknown distribution of valuations. Chatterjee and Samuelson (1983, Example 2) show in a

specific example with Ns = 1 = Nb that the strategy for the buyer or seller can involve a “flat spot”

if the support of the distribution of valuations for the buyer is different from the support of the

distribution of valuations for the seller, even with a continuous action space. Leininger et al. (1989)

show that there exists equilibria in which both buyers and sellers use step functions as their strategies.

One of these equilibria is particularly simple, with the valuations supported on [0, 1]. For some θ, a

buyer with a valuation less than θ bids 0 and a buyer with a valuation weakly greater than θ bids θ.

Conversely, a seller with a valuation weakly less than θ asks θ and a seller with a valuation greater

than θ asks 1. The corresponding ex interim expected allocation and ex interim expected transfer

would not be differentiable.

C. Proofs

In order to economize on space, references to equations and quantities defined in the body of the

paper are used in the proofs. The first result is a technical lemma used in the proof of Theorem 4.

Lemma 4. Suppose that (Y, X) are random variables with Y ∈ Rd and X ∈ R. Suppose P (Y ∈

U |X = x2) ≥ P (Y ∈ U |X = x1) for all Borel measurable upper sets U , for x2 ≥ x1. Then, for

any weakly increasing function f(·) and weakly increasing function g(·), P (f(Y ) ∈ U |g(X) = h2) ≥

P (f(Y ) ∈ U |g(X) = h1) for all Borel measurable upper sets U , for h2 ≥ h1.

Proof of Lemma 1. Obviously, Assumption I of Lemma 1 implies Assumption II of Lemma 1. By

Assumption 4 (Correct beliefs), θiEΠi(xi(ai, a−i)|θ′
i) − EΠi(ti(ai, a−i)|θ′

i) = θiEΠi(xi(ai, a−i(θ−i))|θ′
i) −
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EΠi(ti(ai, a−i(θ−i))|θ′
i), because the distribution of A−i|θ′

i is the same as the distribution of a−i(θ−i)|θ′
i.

Under the condition that zi ∈ Ãi(vi) it holds that vixi(zi, a−i) − ti(zi, a−i) is a weakly decreasing

function of a−i given a−i from the support by Assumption II of Lemma 1, so vixi(zi, a−i(θ−i)) −

ti(zi, a−i(θ−i)) is a weakly decreasing function of θ−i under the use of weakly increasing strategies by

all players j ∈ I.

Under Assumption III of Lemma 1, by standard properties of affiliated random variables (e.g.,

Milgrom and Weber (1982, Theorem 5) or Milgrom (2004, Theorem 5.4.5)), viEΠi
(xi(zi, a−i)|θ′

i) −

EΠi
(ti(zi, a−i)|θ′

i) is a weakly decreasing function of θ′
i. Leading to the same conclusion, under Assump-

tion IV of Lemma 1, by standard properties of the usual multivariate stochastic order (e.g., Shaked

and Shanthikumar (2007, Chapter 6)), it follows that viEΠi
(xi(zi, a−i)|θ(1)

i ) − EΠi
(ti(zi, a−i)|θ(1)

i ) ≥

viEΠi
(xi(zi, a−i)|θ(2)

i ) − EΠi
(ti(zi, a−i)|θ(2)

i ) for θ
(1)
i ≤ θ

(2)
i .

Assumption 6(a) follows by setting θ
(1)
i = θ′

i and θ
(2)
i = θi and vi = θi and zi = ai(θi) in this

inequality. This specification is allowed because, by assumption, ai(θi) ∈ Ãi(θi).

Assumption 6(b) follows from θiEΠi
(xi(zi, a−i)|θi) − EΠi

(ti(zi, a−i)|θi) ≥ θiEΠi
(xi(zi, a−i)|θ′′

i ) −

EΠi
(ti(zi, a−i)|θ′′

i ) for all zi ∈ Ãi(θi), where the inequality is by the above inequality with θ
(1)
i = θi and

θ
(2)
i = θ′′

i and vi = θi. Using Assumption II of Lemma 1, this implies that supzi∈Ai
(θiEΠi

(xi(zi, a−i)|θi)−

EΠi
(ti(zi, a−i)|θi)) ≥ supzi∈Ai

(θiEΠi
(xi(zi, a−i)|θ′′

i ) − EΠi
(ti(zi, a−i)|θ′′

i )). □

Proof of Lemma 2. By definition, xi(a) = E(x̃i(a)) = E(x̃i(a)|Ai = ai, A−i = a−i) = E(Xi|Ai =

ai, A−i = a−i) and ti(a) = E(t̃i(a)) = E(t̃i(a)|Ai = ai, A−i = a−i) = E(Ti|Ai = ai, A−i = a−i).

Consider EP (xi(ai, A−i)|Ai = z′
i). Suppose that ai ∈ Ad

i and z′
i ∈ Ad

i . A point in the support

of A−i|(Ai = z′
i) combined with a point in the support of Ai is a point in the support of A, given

the assumption on Ad. Therefore, xi(ai, a−i) is point identified at all values used in the evaluation

of EP (xi(ai, A−i)|Ai = z′
i). The distribution of A−i|(Ai = z′

i) is point identified since z′
i ∈ Ad

i .

Therefore, EP (xi(ai, A−i)|Ai = z′
i) is point identified. It is similar for EP (xi(zi, A−i)|Ai = z′′

i ),

EP (ti(ai, A−i)|Ai = z′
i), and EP (ti(zi, A−i)|Ai = z′′

i ). Therefore, there is game-structure identification

of differences per Definition 2. □

Proof of Theorem 1. By Assumption 3 (Optimal strategy is used), Equation 13 is a necessary condition

for any action ãi(θi) used by player i. Then, under Assumption 4 (Correct beliefs), Equation 14

is an equivalent necessary condition. Then, under Assumptions 5 (Weakly increasing strategy is

used), and 6 (Monotone effect of counterfactual beliefs on utility), Equation 18 is valid. Under
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Assumption 5 (Weakly increasing strategy is used), given that z′
i < ai(θi) < z′′

i are all used in the

data, all elements of Θi(z′
i) are less than all elements of Θi(ai(θi)), and all elements of Θi(ai(θi)) are

less than all elements of Θi(z′′
i ), where Θi(·) is defined in Equation 15. In particular, θi ∈ Θi(ai(θi)),

all elements of Θi(z′
i) are less than θi, and θi is less than all elements of Θi(z′′

i ). Then, combining

Equations 16 and 17 with Equation 18, Equation 19 is valid. By Assumption 8 (Known bounds on

actions), the valuation vi associated with an observed action ai must satisfy aLi(vi) ≤ ai ≤ aUi(vi),

and therefore a−1
Ui (ai) ≤ vi ≤ a−1

Li (ai) by construction of those functions. Equations 4, 6, 20 and 21

follow immediately, using Assumption 7 (Known bounds on valuations).

Now, for a given ai, consider any θ̃i < ΦLi(a′
i) with a′

i ≤ ai, a′
i ∈ Ad

i . If θ′
i is any valuation consistent

with using action a′
i, then θ′

i ≥ ΦLi(a′
i). Moreover, since a′

i ∈ Ad
i by construction, there is indeed some

valuation θ′
i that uses action a′

i. By Assumption 5 (Weakly increasing strategy is used), the action

used by valuation θ̃i is weakly less than the action used by valuation θ′
i ≥ ΦLi(a′

i) > θ̃i, so the action

used by valuation θ̃i is weakly less than a′
i. Moreover, since θ̃i ≱ ΦLi(a′

i) by construction, valuation θ̃i

cannot use action a′
i. Consequently, player i with valuation θ̃i must use an action strictly less than a′

i.

By the contrapositive, any used action weakly greater than a′
i must correspond to a valuation weakly

greater than ΦLi(a′
i). Consequently, because a′

i ≤ ai, the valuation θi corresponding to the use of

action ai must be weakly greater than ΦLi(a′
i). Since the above holds for any a′

i ≤ ai, a′
i ∈ Ad

i , the

valuation θi corresponding to the use of action ai must be weakly greater than supa′
i≤ai,a′

i∈Ad
i

ΦLi(a′
i).

Consequently, supa′
i≤ai,a′

i∈Ad
i

ΦLi(a′
i) is a lower bound for the valuation corresponding to ai. Similarly,

infa′
i≥ai,a′

i∈Ad
i

ΦUi(a′
i) is an upper bound for the valuation corresponding to ai.

Therefore, considering the joint distribution of (θ1, θ2, . . . , θN1) and corresponding observed actions

(A1, A2, . . . , AN1), it holds for all realizations that, for each i ∈ J , ΥLi(Ai) ≤ θi ≤ ΥUi(Ai). □

Independent valuations. Under Assumption 1*, the following adjustments are made to the

proof. Under Assumption 1*, Equations 13 and 14 need not condition on θi since beliefs do not

depend on valuation. Thus, Equations 9 and 11 are valid bounds for the valuation, even without

Assumption 6 (Monotone effect of counterfactual beliefs on utility). Then, by arguments similar to

those used previously in the proof of Theorem 1, the valuation corresponding to ai must be between

supa′
i≤ai,a′

i∈Ad
i
ΞLi(a′

i) and infa′
i≥ai,a′

i∈Ad
i
ΞUi(a′

i). Thus, the valuation corresponding to ai must be

between ΓLi(ai) and ΓUi(ai) defined in Equation 12.
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To establish game-structure identification of differences, EP (Xi|Ai = zi) = EP (x̃i(Ai, A−i)|Ai =

zi) = EP (xi(zi, A−i)|Ai = zi) = EP (xi(zi, A−i)), where the first equality holds by definition of the

game (and resulting allocations), the second equality holds by standard properties of conditioning and

the law of iterated expectations (with respect to any randomness in the allocation), and the third

equality holds because the actions of different players are independent. It is similar for EP (Ti|Ai =

zi) = EP (ti(zi, A−i)). ⋆

Proof of Theorem 2. Arbitrarily choose an a∗
i ∈ Ki, and specify that EP (xi(zi, A−i)) = EP (xi(a∗

i , A−i))

and EP (ti(zi, A−i)) = EP (ti(a∗
i , A−i)) for any zi /∈ Ki, where the right sides are point identified from

Assumption I of Theorem 2. Consequently, any such action zi gives the same expected allocation and

expected transfer as does the action a∗
i . Therefore, player i would get the same utility from action zi

as it would from action a∗
i . Consequently, for checking optimality of an action, it suffices to restrict

to actions in Ki.

For i ∈ J , let Γi(·) defined on Ad
i be a strictly increasing function such that ΓLi(·) ≤ Γi(·) ≤ ΓUi(·)

from Assumption V of Theorem 2. For i /∈ J , if any, let Γi(·) be an arbitrary strictly increasing

function on Ad
i . This effectively implies that such players are “behavioral players,” in the sense

that subsequent steps of the analysis just rely on them behaving according to a certain distribution.

This is consistent with “sharpness.” Implicitly, this implies that such player i that uses action ai is

“assigned” to have a valuation Γi(ai).

Consider the distribution of actions according to conjectured strategies Γ−1
i (·) defined on the support

of Γi(Ai) where Ai ∼ P (A). Since Γi(·) is strictly increasing on Ad
i , Γ−1

i (·) is strictly increasing

on the support of Γi(Ai). In particular, this implies Assumption 5 (Weakly increasing strategy is

used) is satisfied. Thus, the distribution of actions is (Γ−1
1 (Γ1(A1)), Γ−1

2 (Γ2(A2)), . . . , Γ−1
N (ΓN (AN ))) =

(A1, A2, . . . , AN ), as claimed. Further, using Assumption IV of Theorem 2, the conjectured distribution

of valuations has independent components, thus satisfying Assumption 1* (Independent valuations).

Thus, in the analysis of utility maximization, it is not necessary to condition beliefs on valuation.

For i ∈ J , by construction for given ai ∈ Ad
i , the corresponding valuation satisfies a−1

Ui (ai) ≤

Γi(ai) ≤ a−1
Li (ai) by Equations 9 and 11. Therefore, aLi(Γi(ai)) ≤ ai ≤ aUi(Γi(ai)). For the inequality

aLi(Γi(ai)) ≤ ai, if a−1
Li (ai) = ∞, then since aLi(·) is weakly increasing, all vi are such that aLi(vi) ≤ ai.

So suppose that a−1
Li (ai) < ∞. Then because aLi(·) is weakly increasing, aLi(Γi(ai)) ≤ aLi(a−1

Li (ai)) ≤

ai. The last inequality there holds by continuity of aLi(·) by Assumption II of Theorem 2, which
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implies aLi(a−1
Li (ai)) = limt→a−1

Li (ai) aLi(t). This sequence can be taken as elements of {vi : aLi(vi) ≤ ai}

approaching a−1
Li (ai); along that sequence, aLi(t) ≤ ai, so limt→a−1

Li (ai) aLi(t) ≤ ai. This set is non-

empty since Γi(ai) ≤ a−1
Li (ai), so the sup of the set is not −∞. The inequality ai ≤ aUi(Γi(ai)) is

similar. This valuation Γi(ai) uses action ai according to the strategies Γ−1
i , from above. Thus,

Assumption 8 (Known bounds on actions) is satisfied. It is obvious that Assumption 7 (Known

bounds on valuations) is satisfied by construction, by Equations 9 and 11.

Consider the realization (Γ1(a1), Γ2(a2), . . . , ΓN(aN)) for some a ∈ Ad from the distribution of

valuations, which by construction uses the action a using the conjectured strategies. For each player

i ∈ J , the utility maximization problem is to maximize Γi(ai)EΠi
(xi(zi, a−i)) − EΠi

(ti(zi, a−i)).

Specifying player i to have correct beliefs, thus satisfying Assumption 4 (Correct beliefs), whereby

Πi(a−i) = P (A−i) since the distribution of actions is the same as in the real data by the above, this

is the same as maximizing Γi(ai)EP (xi(zi, A−i)) − EP (ti(zi, A−i)). The action that this valuation

actually uses would satisfy the condition of utility maximization exactly when Γi(ai)EP (xi(ai, A−i))−

EP (ti(ai, A−i)) ≥ Γi(ai)EP (xi(zi, A−i)) − EP (ti(zi, A−i)) for all zi ∈ Ai. The following establishes

this is true.

Consider zi ∈ Ai such that (ai, zi) ∈ R⊥
i . By the setup in Assumption I of Theorem 2, this includes

all zi ∈ Ki.

For zi ∈ {Ai : EP (xi(ai, A−i)) − EP (xi(zi, A−i)) > 0}, Γi(ai) ≥ ΓLi(ai) ≥ EP (ti(ai,A−i))−EP (ti(zi,A−i))
EP (xi(ai,A−i))−EP (xi(zi,A−i))

by Equations 8, 9 and 12. This uses the condition that ai ∈ Ad
i by construction, and the condition

that (ai, zi) ∈ R⊥
i . Consequently, after re-arranging that inequality, the utility from action ai weakly

exceeds the utility from action zi. Similarly, for zi ∈ {Ai : EP (xi(ai, A−i)) − EP (xi(zi, A−i)) < 0},

Γi(ai) ≤ ΓUi(ai) ≤ EP (ti(ai,A−i))−EP (ti(zi,A−i))
EP (xi(ai,A−i))−EP (xi(zi,A−i)) by Equations 10 to 12. Consequently, after re-arranging

that inequality, the utility from action ai weakly exceeds the utility from action zi.

For zi ∈ {Ai : EP (xi(ai, A−i)) − EP (xi(zi, A−i)) = 0}, by Assumption III of Theorem 2, it follows

that −EP (ti(ai, A−i)) ≥ −EP (ti(zi, A−i)). Thus, the utility from action ai weakly exceeds the utility

from action zi for any valuation of player i.

Therefore, Assumption 3 (Optimal strategy is used) is satisfied. □

Proof of Theorem 3. For the part of Theorem 3 about the assumptions: Assumption I of Theorem 2

holds by the last part of the independent valuations part of Theorem 1. Assumption II of Theorem

2 holds directly. Assumption III of Theorem 2 holds under the assumptions of Theorem 1, since
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ai ∈ Ad
i implies that ai maximizes utility for some valuation, which would only be consistent with

EP (xi(ai, A−i)) = EP (xi(zi, A−i)) if indeed −EP (ti(ai, A−i)) ≥ −EP (ti(zi, A−i)). Assumption IV of

Theorem 2 holds because independent valuations implies independent actions.

For the part of Theorem 3 about existence of at least one specification of Γi(·): Under the true

data generating process, per Assumption 5 (Weakly increasing strategy is used) there are weakly

increasing strategies ai(θi) that generate the data, for the true distribution of valuations. Then, let

Γi(ai) = selΘi(ai) defined on ai ∈ Ad
i , a selection from the set of valuations that uses action ai per

the discussion of Assumption 5 (Weakly increasing strategy is used). By the proof of Theorem 1,

given the validity of the bounds, it must be that ΓLi(·) ≤ Γi(·) ≤ ΓUi(·) on Ad
i . Consider any pair

ai ∈ Ad
i and a′

i ∈ Ad
i with ai < a′

i. Given the ordering of the sets Θi(·) from Section 3.6, it must be

that Γi(ai) < Γi(a′
i), so Γi(·) is strictly increasing on Ad

i .

For the next part of Theorem 3 about Γi(·): let Γi(·) defined on Ad
i be a strictly increasing function

such that ΓLi(·) ≤ Γi(·) ≤ ΓUi(·). Per the previous part of Theorem 3, at least one such function exists.

Then let Γ̃i(·) = αΓi(·) + (1 − α)ΓLi(·) for some α ∈ (0, 1). Clearly, ΓLi(·) ≤ Γ̃i(·) ≤ ΓUi(·). Moreover,

clearly Γ̃i(·) is strictly increasing because Γi(·) is strictly increasing and ΓLi(·) is weakly increasing.

Further, 0 ≤ Γ̃i(·) − ΓLi(·) = α (Γi(·) − ΓLi(·)) ≤ α (ΘUi − ΘLi), so supai∈Ad
i

(
Γ̃i(ai) − ΓLi(ai)

)
< ϵ

by taking α < ϵ
ΘUi−ΘLi

. Similar arguments based on Γ̃i(·) = αΓi(·) + (1 − α)ΓUi(·) establish that

0 ≤ supai∈Ad
i

(
ΓUi(ai) − Γ̃i(ai)

)
< ϵ.

The part of Theorem 3 about distributional properties: (Γ1(A1), Γ2(A2), . . . , ΓN1(AN1)) is the same

as (Γ1(a1(θ1)), Γ2(a2(θ2)), . . . , ΓN1(aN1(θN1))), where ai(·) is weakly increasing per Assumption 5. □

Proof of Theorem 4. Arbitrarily choose a∗
i ∈ Ki

i. For any (zi, a−i) /∈ Ki such that zi /∈ Ki
i, specify

that xi(zi, a−i) = xi(a∗
i , a−i) and ti(zi, a−i) = ti(a∗

i , a−i), for all a−i ∈ Ad
−i. In these specifications, by

Assumption I of Theorem 4, the right sides are point identified. Given the (subsequent) expressions

for the utility maximization problem, this implies that a player i would get the same utility from

action zi as it would from action a∗
i . Consequently, for checking for the maximal amount of foregone

utility of an action, it will suffice to restrict attention to actions in Ki
i. The allocation rule and

transfer rule for a−i /∈ Ad
−i is irrelevant, so can be specified arbitrarily.

Except for the part about independent components, the second and third paragraphs of the proof

of Theorem 2 remain true after substituting Υ for Γ.
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Consider the realization (Υ1(a1), Υ2(a2), . . . , ΥN(aN)) for some a ∈ Ad from the distribution of

valuations, which by construction uses the action a using the conjectured strategies Υ−1
i (·). For

each player i ∈ J , the utility maximization problem is to maximize Υi(ai)EΠi
(xi(zi, a−i)|θ̃i =

Υi(ai)) − EΠi
(ti(zi, a−i)|θ̃i = Υi(ai)), where the θ̃ notation reflects the conjectured valuation, which

may not equal the “true” valuations in the data. Specifying player i to have correct beliefs, thus

satisfying Assumption 4, Πi(a−i|θ̃i = t) = Πi(Υ−1
−i (θ̃−i)|θ̃i = t) = Πi(Υ−1

−i (Υ−i(A−i))|Υi(Ai) = t) =

P (A−i|Υ−1
i (Υi(Ai)) = Υ−1

i (t)) = P (A−i|Ai = Υ−1
i (t)). The first equality is the definition of correct

beliefs in this setup, the second equality uses the construction of θ̃, and the third and fourth equalities

use that Υ−1
i is strictly increasing on the support of Υi(Ai). Thus, utility maximization is the same

as maximizing Υi(ai)EP (xi(zi, A−i)|Ai = Υ−1
i (Υi(ai))) − EP (ti(zi, A−i)|Ai = Υ−1

i (Υi(ai))), which is

the same as maximizing Υi(ai)EP (xi(zi, A−i)|Ai = ai) − EP (ti(zi, A−i)|Ai = ai).

The arguments for Assumptions 5, 7 and 8 being satisfied are the same as in the proof of Theorem 2.

Consider a given ai ∈ Ad
i , and consider another zi ∈ Ki

i. Consider the foregone utility that player i

with valuation Υi(ai) gets from action ai compared to from action zi. Consider any z′
i < ai < z′′

i with

{z′
i, z′′

i } ∈ Ad
i ; if none exist, then the upper bound on foregone utility comparing action ai to action

zi is ∞. Under the conditions of Theorem 4(b), it suffices to restrict attention to the actions in ˜̃Ai.

Suppose that EP (xi(ai, A−i)|Ai = z′
i) − EP (xi(zi, A−i)|Ai = z′′

i ) > 0. Thus, Υi(ai) ≥ ΥLi(ai) ≥
EP (ti(ai,A−i)|Ai=z′

i)−EP (ti(zi,A−i)|Ai=z′′
i )

EP (xi(ai,A−i)|Ai=z′
i)−EP (xi(zi,A−i)|Ai=z′′

i ) by Equations 3, 4 and 7. This uses the condition that ai ∈ Ad
i

by construction. This also use the fact that (ai, zi, z′
i, z′′

i ) ∈ Ri, which is true by construction.

After re-arranging that inequality, Υi(ai)
[
EP (xi(ai, A−i)|Ai = z′

i) − EP (xi(zi, A−i)|Ai = z′′
i )

]
−[

EP (ti(ai, A−i)|Ai = z′
i) − EP (ti(zi, A−i)|Ai = z′′

i )
]

≥ 0. Equivalently, Υi(ai)
[
χi(ai, ai) − χi(ai, ai) +

χi(ai, z′
i) − χi(zi, ai) + χi(zi, ai) − χi(zi, z′′

i )
]

−
[
τi(ai, ai) − τi(ai, ai) + τi(ai, z′

i) − τi(zi, ai) + τi(zi, ai) −

τi(zi, z′′
i )

]
≥ 0. Thus, Υi(ai)

[
χi(ai, ai) − χi(zi, ai)

]
−

[
τi(ai, ai) − τi(zi, ai)

]
≥ Υi(ai)

[
χi(ai, ai) −

χi(ai, z′
i) − [χi(zi, ai) − χi(zi, z′′

i )]
]

−
[
τi(ai, ai) − τi(ai, z′

i) − [τi(zi, ai) − τi(zi, z′′
i )]

]
. Therefore, the

amount of foregone utility is no more than −
(
Υi(ai)

[
χi(ai, ai) − χi(ai, z′

i) − [χi(zi, ai) − χi(zi, z′′
i )]

]
−[

τi(ai, ai) − τi(ai, z′
i) − [τi(zi, ai) − τi(zi, z′′

i )]
])

.

Suppose that EP (xi(ai, A−i)|Ai = z′
i) − EP (xi(zi, A−i)|Ai = z′′

i ) < 0. Thus, Υi(ai) ≤ ΥUi(ai) ≤
EP (ti(ai,A−i)|Ai=z′

i)−EP (ti(zi,A−i)|Ai=z′′
i )

EP (xi(ai,A−i)|Ai=z′
i)−EP (xi(zi,A−i)|Ai=z′′

i ) by Equations 5 to 7. Consequently, after re-arranging that

inequality, the same bound as above obtains.
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Therefore, an upper bound for the foregone utility comparing action ai and zi is inf{z′
i,z

′′
i }∈Zi(ai,zi)

(
−(

Υi(ai)
[
χi(ai, ai)−χi(ai, z′

i)− [χi(zi, ai)−χi(zi, z′′
i )]

]
−

[
τi(ai, ai)−τi(ai, z′

i)− [τi(zi, ai)−τi(zi, z′′
i )]

]))
,

where Zi(ai, zi) = {{z′
i, z′′

i } ∈ Ad
i : z′

i < ai < z′′
i and χi(ai, z′

i) ̸= χi(zi, z′′
i )}. And, therefore the overall

upper bound on the foregone utility of a player with valuation Υi(ai) who uses action ai is the sup of

this over zi ∈ Ki
i and zi ̸= ai, and zi ∈ ˜̃Ai under the conditions of Theorem 4(b).

For Theorem 4(c): The conditions of Lemma 1 are satisfied, by the following arguments. Since

all players use weakly increasing strategies in the data by assumption, including any i /∈ J , by the

same arguments as before, any distributional property of F (θ) that is preserved by weakly increasing

component-wise transformations is also a property of (Υ1(A1), Υ2(A2), . . . , ΥN(AN)). Therefore, if

Assumption III of Lemma 1 is true about F (θ), then (Υ1(A1), Υ2(A2), . . . , ΥN(AN)) is affiliated,

since affiliation is preserved under weakly increasing transformations (e.g., Milgrom and Weber

(1982, Theorem 3)). Alternatively, if Assumption IV of Lemma 1 is true about F (θ), then it is

also true about (Υ1(A1), Υ2(A2), . . . , ΥN(AN)), because the property in Assumption IV of Lemma

1 is preserved under weakly increasing transformations by Lemma 4. Assumption I of Lemma 1 is

true directly by the assumption for the true allocation and transfer rules. By the above derivations,

players i ∈ J have correct beliefs and all players use a monotone strategy. For the assumption of

Lemma 1 on Υ−1
i (vi) ∈ Ãi(vi), it has been established that aLi(Υi(ai)) ≤ ai ≤ aUi(Υi(ai)) for all

ai ∈ Ad
i , which by the assumption of this result implies that Υ−1

i (vi) ∈ Ãi(vi) for every vi that arises

of the form vi = Υi(ai) with ai ∈ Ad
i . Thus, by Lemma 1, Assumption 6 is satisfied. □

Proof of Theorem 5. The corresponding parts of the proof of Theorem 3 remain true after substituting

Υ for Γ. □

Proof of Theorem 6. From Assumptions 9 (Continuous action space and no point masses in dis-

tribution of actions), 11 (Differentiable ex interim expected allocation and expected transfer), 12

(Game-structure identification of derivatives), and 13 (Non-zero marginal expected allocation),

let Ei = (int(Ai))C ∪ Ei,d ∪ Ei,r ∪ Ei,m and E = ⋃
i∈J (Ei × A−i), the set of a with at least one

component an element of some Ei with i ∈ J . Equivalently, EC = ∩i∈J (Ei × A−i)C ; thus, if

a ∈ EC , then ai ∈ EC
i for all players i ∈ J . Only for this part of this proof, use the nota-

tion that θ̂ = (θ1, θ2, . . . , θN1) and Â = (A1, A2, . . . , AN1). It follows that P (Â ∈ E) = 0. Then

P (θ̂ ∈ B) = P (θ̂ ∈ B, Â ∈ EC) + P (θ̂ ∈ B, Â ∈ E) = P (θ̂ ∈ B, Â ∈ EC) = P (θ̂ ∈ B|Â ∈ EC) for any

Borel set B, so it is enough to restrict the identification problem to recovering the distribution of θ̂
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from actions in EC . By Assumptions 2 (Action space is ordered), 3 (Optimal strategy is used), 9

(Continuous action space and no point masses in distribution of actions), and 11 (Differentiable ex

interim expected allocation and expected transfer), Equation 29 is the necessary condition for any

action used by player i ∈ J in Ad
i ∩ int(Ai) ∩ EC

i,d:

(29) θi
∂EΠi

(xi(ai, a−i)|θi)
∂ai

∣∣∣∣∣
ai=ãi(θi)

− ∂EΠi
(ti(ai, a−i)|θi)

∂ai

∣∣∣∣∣
ai=ãi(θi)

= 0.

By Assumptions 1 (Dependent valuations), 5 (Weakly increasing strategy is used), 9 (Continuous

action space and no point masses in distribution of actions), and 10 (Smooth distribution of valuations),

conditioning on θi is equivalent to conditioning on Ai = ai(θi), because if two distinct valuations use

the same action the entire interval between those valuations would also use the same action, resulting

in a point mass in the distribution of actions by Assumption 10 (Smooth distribution of valuations).

So by Assumption 4 (Correct beliefs), Equation 30 is valid for actions in Ad
i ∩ int(Ai) ∩ EC

i,d:

(30) θi
∂EP (xi(ai, A−i)|Ai)

∂ai

∣∣∣∣∣
ai=Ai

− ∂EP (ti(ai, A−i)|Ai)
∂ai

∣∣∣∣∣
ai=Ai

= 0.

Under Assumption 13 (Non-zero marginal expected allocation), Equation 31 is valid for all actions

used by player i ∈ J in Ad
i ∩ int(Ai) ∩ EC

i,d ∩ EC
i,m:

(31) θi = Ψi(Ai).

By Assumption 12 (Game-structure identification of derivatives), Ψi(ai) is point identified for all

ai ∈ Ad
i ∩ int(Ai) ∩ EC

i,d ∩ EC
i,m ∩ EC

i,r. □

Independent valuations. Under Assumption 1*, the following adjustments are made to the proof.

Equation 29 need not condition on θi since beliefs are independent of valuation. Similarly, Equation 30

is valid without conditioning on Ai. ⋆

Proof of Lemma 3. The definitions of Ψx
i (·) and Ψt

i(·) are given in Equation 23. Therefore, by

substitution, the expressions in Equation 28 are valid. Let ai ∈ Ad
i be given, and let S be given

with the stated properties. Let a′
i ∈ Ad

i ∩ S. By assumption, EP (Xi|Ai = a′
i, A−i = a−i) and

EP (Ti|Ai = a′
i, A−i = a−i) are point identified for all a−i in a probability 1 subset of the support

of A−i|(Ai = ai). Therefore, given that the distribution of A−i|(Ai = ai) is point identified by

assumption, EP (EP (Xi|Ai = a′
i, A−i)|Ai = ai) and EP (EP (Ti|Ai = a′

i, A−i)|Ai = ai) are point
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identified. Consequently, the existence and values of Ψx
i (ai) and Ψt

i(ai) are point identified by the

existence and values of the limits corresponding to expressions in Equation 28. □

Proof of Lemma 4. The claim is trivial for h2 = h1, so consider h2 > h1. P (Y ∈ U |g(X) = h0) =

P (Y ∈ U |X ∈ g−1(h0)) =
∫

P (Y ∈ U |X = x)dP (X = x|X ∈ g−1(h0)) ∈ [
∫

infx∈g−1(h0) P (Y ∈

U |X = x)dP (X = x|X ∈ g−1(h0)),
∫

supx∈g−1(h0) P (Y ∈ U |X = x)dP (X = x|X ∈ g−1(h0))]. Since

g(·) is weakly increasing, if x1 ∈ g−1(h1) then g(x1) = h1 < h2 so if g(x2) = h2 it must be that x2 ≥ x1

(since x2 < x1 would imply g(x2) ≤ g(x1)), so x1 ≤ inf{x2 : x2 ∈ g−1(h2)}. Therefore, any value of

P (Y ∈ U |X = x) where x ∈ g−1(h1) is less than or equal to all values of P (Y ∈ U |X = x) where

x ∈ g−1(h2). Therefore, infx∈g−1(h2) P (Y ∈ U |X = x) ≥ supx∈g−1(h1) P (Y ∈ U |X = x). Therefore,

P (Y ∈ U |g(X) = h2) ≥ P (Y ∈ U |g(X) = h1). This implies by Shaked and Shanthikumar (2007,

Theorem 6.B.16) that P (f(Y ) ∈ U |g(X) = h2) ≥ P (f(Y ) ∈ U |g(X) = h1). □
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